Neural-network-based human intention estimation for physical human-robot interaction

Author(s):  
Shuzhi Sam Ge ◽  
Yanan Li ◽  
Hongsheng He
Author(s):  
Akif Durdu ◽  
Ismet Erkmen ◽  
Aydan M. Erkmen ◽  
Alper Yilmaz

Estimating and reshaping human intentions are among the most significant topics of research in the field of human-robot interaction. This chapter provides an overview of intention estimation literature on human-robot interaction, and introduces an approach on how robots can voluntarily reshape estimated intentions. The reshaping of the human intention is achieved by the robots moving in certain directions that have been a priori observed from the interactions of humans with the objects in the scene. Being among the only few studies on intention reshaping, the authors of this chapter exploit spatial information by learning a Hidden Markov Model (HMM) of motion, which is tailored for intelligent robotic interaction. The algorithmic design consists of two phases. At first, the approach detects and tracks human to estimate the current intention. Later, this information is used by autonomous robots that interact with detected human to change the estimated intention. In the tracking and intention estimation phase, postures and locations of the human are monitored by applying low-level video processing methods. In the latter phase, learned HMM models are used to reshape the estimated human intention. This two-phase system is tested on video frames taken from a real human-robot environment. The results obtained using the proposed approach shows promising performance in reshaping of detected intentions.


Robotics ◽  
2013 ◽  
pp. 1381-1406
Author(s):  
Akif Durdu ◽  
Ismet Erkmen ◽  
Aydan M. Erkmen ◽  
Alper Yilmaz

Estimating and reshaping human intentions are among the most significant topics of research in the field of human-robot interaction. This chapter provides an overview of intention estimation literature on human-robot interaction, and introduces an approach on how robots can voluntarily reshape estimated intentions. The reshaping of the human intention is achieved by the robots moving in certain directions that have been a priori observed from the interactions of humans with the objects in the scene. Being among the only few studies on intention reshaping, the authors of this chapter exploit spatial information by learning a Hidden Markov Model (HMM) of motion, which is tailored for intelligent robotic interaction. The algorithmic design consists of two phases. At first, the approach detects and tracks human to estimate the current intention. Later, this information is used by autonomous robots that interact with detected human to change the estimated intention. In the tracking and intention estimation phase, postures and locations of the human are monitored by applying low-level video processing methods. In the latter phase, learned HMM models are used to reshape the estimated human intention. This two-phase system is tested on video frames taken from a real human-robot environment. The results obtained using the proposed approach shows promising performance in reshaping of detected intentions.


Author(s):  
Akimul Prince ◽  
Biswanath Samanta

The paper presents a control approach based on vertebrate neuromodulation and its implementation on an autonomous robot platform. A simple neural network is used to model the neuromodulatory function for generating context based behavioral responses to sensory signals. The neural network incorporates three types of neurons — cholinergic and noradrenergic (ACh/NE) neurons for attention focusing and action selection, dopaminergic (DA) neurons for curiosity-seeking, and serotonergic (5-HT) neurons for risk aversion behavior. The implementation of the neuronal model on a relatively simple autonomous robot illustrates its interesting behavior adapting to changes in the environment. The integration of neuromodulation based robots in the study of human-robot interaction would be worth considering in future.


Author(s):  
Adhau P ◽  
◽  
Kadwane S. G ◽  
Shital Telrandhe ◽  
Rajguru V. S ◽  
...  

Human robot interaction have been ever the topic of research to research scholars owing to its importance to help humanity. Robust human interacting robot where commands from Electromyogram (EMG) signals is recently being investigated. This article involves study of motions a system that allows signals recorded directly from a human body and thereafter can be used for control of a small robotic arm. The various gestures are recognized by placing the electrodes or sensors on the human hand. These gestures are then identified by using neural network. The neural network will thus train the signals. The offline control of the arm is done by controlling the motors of the robotic arm.


2018 ◽  
Vol 11 (1) ◽  
pp. 75-84
Author(s):  
Alvin Rindra Fazrie

ABSTRACT The paper gives an overview about the process between two language processing methods towards Human-robot interaction. In this paper, Echo State Networks and Stochastic-learning grammar are explored in order to get an idea about generating human’s natural language and the possibilities of integrating these methods to make the communication process between robot to robot or robot to human to be more natural in dialogic syntactic language game. The methods integration could give several benefits such as improving the communicative efficiency and producing the more natural communication sentence.   ABSTRAK Tulisan ini memberikan penjabaran mengenai dua metode pemrosesan bahasa alami pada interaksi Manusia dan Robot. Echo State Networks adalah salah satu arsitektur dari Jaringan Syaraf Tiruan yang berdasarkan prinsip Supervised Learning untuk Recurrent Neural Network, dieksplorasi bersama Stochastic-learning Grammar yaitu salah satu framework tata bahasa dengan konsep probabilistik yang bertujuan untuk mendapatkan ide bagaimana proses bahasa alami dari manusia dan kemungkinannya mengintegrasikan dua metode tersebut untuk membuat proses komunikasi antara robot dengan robot atau robot dengan manusia menjadi lebih natural dalam dialogic syntactic language game. Metode integrasi dapat memberikan beberapa keuntungan seperti meningkatkan komunikasi yang efisien dan dapat membuat konstruksi kalimat saat komunikasi menjadi lebih natural. How To Cite : Fazrie, A.R. (2018). HUMAN-ROBOT INTERACTION: LANGUAGE ACQUISITION WITH NEURAL NETWORK. Jurnal Teknik Informatika, 11(1), 75-84.  doi 10.15408/jti.v11i1.6093 Permalink/DOI: http://dx.doi.org/10.15408/jti.v11i1.6093 


Sign in / Sign up

Export Citation Format

Share Document