Prototyping of Robotic Systems - Advances in Computational Intelligence and Robotics
Latest Publications


TOTAL DOCUMENTS

15
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By IGI Global

9781466601765, 9781466601772

Author(s):  
Ahmed ElSayed ◽  
Elif A. Kongar ◽  
Surendra M. Gupta

Electronic products enter the waste stream rapidly due to technological enhancements. Their parts and material recovery involve significant economic and environmental gain. To regain the value added to such products a certain level of disassembly may be required. Disassembly operations are often expensive and the complexity of determining the best disassembly sequence increases as the number of parts in a product grows. Therefore, it is necessary to develop methodologies for obtaining optimal or near optimal disassembly sequences to ensure efficient recovery process. To that end, this chapter introduces a Genetic Algorithm based methodology to develop disassembly sequencing for end-of-life products. A numerical example is presented to provide and demonstrate better understating and functionality of the algorithm.


Author(s):  
Akif Durdu ◽  
Ismet Erkmen ◽  
Aydan M. Erkmen ◽  
Alper Yilmaz

Estimating and reshaping human intentions are among the most significant topics of research in the field of human-robot interaction. This chapter provides an overview of intention estimation literature on human-robot interaction, and introduces an approach on how robots can voluntarily reshape estimated intentions. The reshaping of the human intention is achieved by the robots moving in certain directions that have been a priori observed from the interactions of humans with the objects in the scene. Being among the only few studies on intention reshaping, the authors of this chapter exploit spatial information by learning a Hidden Markov Model (HMM) of motion, which is tailored for intelligent robotic interaction. The algorithmic design consists of two phases. At first, the approach detects and tracks human to estimate the current intention. Later, this information is used by autonomous robots that interact with detected human to change the estimated intention. In the tracking and intention estimation phase, postures and locations of the human are monitored by applying low-level video processing methods. In the latter phase, learned HMM models are used to reshape the estimated human intention. This two-phase system is tested on video frames taken from a real human-robot environment. The results obtained using the proposed approach shows promising performance in reshaping of detected intentions.


Author(s):  
Zheng (Jeremy) Li

The prototyping and implementation of robotic system is a scientific and technological integrating of robotic system design, development, testing, and application. This chapter describes the recent development and applications of robotic systems to surgery procedures in biomedical engineering and automated manufacturing processes in industry. It includes the design and development, computer-aided modeling and simulation, prototype analysis, and testing of robotic systems in these two different applications.


Author(s):  
Ahmad Taher Azar ◽  
M. Sam Eljamel

Medical robotics is an interdisciplinary field that focuses on developing electromechanical devices for clinical applications. The goal of this field is to enable new medical techniques by providing new capabilities to the physician or by providing assistance during surgical procedures. Medical robotics is a relatively young field, as the first recorded medical application occurred in 1985 for a brain biopsy. It has tremendous potential for improving the precision and capabilities of physicians when performing surgical procedures, and it is believed that the field will continue to grow as improved systems become available. This chapter offers a comprehensive overview about medical robotics field and its applications. It begins with an introduction to robotics, followed by a historical review of their use in medicine. Clinical applications in several different medical specialties are discusssed. The chapter concludes with a discussion of technology challenges and areas for future research.


Author(s):  
Barkan Ugurlu ◽  
Atsuo Kawamura

This chapter is aimed at describing a contemporary bipedal humanoid robot prototyping technology, accompanied with a mathematically rigorous method to generate real-time walking, jumping, and running trajectories that can be applied to this type of robots. The main strategy in this method is to maintain the overall dynamic equilibrium and to prevent undesired rotational actions for the purpose of smooth maneuvering capabilities while the robot is in motion. In order to reach this goal, Zero Moment Point criterion is utilized in spherical coordinates, so that it is possible to fully exploit its properties by the help of Euler’s equations of motions. Such a strategy allows for characterization of the rotational inertia and therefore the associated angular momentum rate change terms, so that undesired torso angle fluctuations during walking and running are well suppressed. It enables prevention of backwards-hopping actions during jumping as well. To validate the proposed approach, the authors performed simulations using a precise 3D simulator and conducted experiments on an actual bipedal robot. Results indicated that the method is superior to classical methods in terms of suppressing undesired rotational actions, such as torso angle fluctuations and backwards-hopping.


Author(s):  
Gen’ichi Yasuda

This chapter deals with modeling, simulation, and implementation problems encountered in robotic manufacturing control systems. Extended Petri nets are adopted as a prototyping tool for expressing real-time control of robotic systems and a systematic method based on hierarchical Petri nets is described for their direct implementation. A coordination mechanism is introduced to coordinate the event activities of the distributed machine controllers through friability tests of shared global transitions. The proposed prototyping method allows a direct coding of the inter-task cooperation by robots and intelligent machines from the conceptual Petri net specification, so that it increases the traceability and the understanding of the control flow of a parallel application specified by a net model. This approach can be integrated with off-the-shelf real-time executives. Control software using multithreaded programming is demonstrated to show the effectiveness of the proposed method.


Author(s):  
Andrew Goldenberg

This chapter provides an experience-based framework of prototypes development and commissioning. It introduces elements learned directly from the practice that encompass aspects of project management, technology development process, and commercialization in the context of Small and Medium Enterprises (SMEs). The contents of this chapter are based mainly on the author’s practical experience of leading an SME technology developer. The author is also a faculty member working as a researcher and teacher. Because of the interrelationship between research and technology development, his views and perception of the topic may be unique, and they are personal. The chapter presents a general framework for robotic systems prototyping. To back up the points made in the chapter, three case studies of robotic prototyping are included to help the reader perceive the outlined concepts.


Author(s):  
Sedat Dogru ◽  
Sebahattin Topal ◽  
Aydan M. Erkmen ◽  
Ismet Erkmen

Robots consistently help humans in dangerous and complex tasks by providing information about, and executing tasks in disaster areas that are highly unstructured, uncertain, possibly hostile, and sometimes not reachable to humans directly. Prototyping autonomous multi-robot systems in disaster scenarios both as hardware platforms and software can provide foundational infrastructure in comparing performance of different methodologies developed for search, rescue, monitoring and reconnaissance. In this chapter, the authors discuss prototyping modules of heterogeneous multi-robot networks and their design characteristics for two different scenarios, namely Search and Rescue in unstructured complex environments, and connectivity maintenance in Sycophant Wireless Sensor Networks which are static ecto-parasitic clandestine sensor networks mounted incognito on mobile agents using only the agent’s mobility without intervention, and are cooperating with sparse mobile robot sensor networks.


Author(s):  
Tamás Haidegger

Information technology and robotics have been integrated into interventional medicine for over 25 years. Their primary aim has always been to provide patient benefits through increased precision, safety, and minimal invasiveness. Nevertheless, robotic devices should allow for sophisticated treatment methods that are not possible by other means. Several hundreds of different surgical robot prototypes have been developed, while only a handful passed clearance procedures, and was released to the market. This is mostly due to the difficulties associated with medical device development and approval, especially in those cases when some form of manipulation and automation is involved. This chapter is intended to present major aspects of surgical robotic prototyping and current trends through the analysis of various international projects. It spans across the phases from system planning, to development, validation, and clearance.


Author(s):  
Pierre Letier ◽  
André Preumont

This chapter describes a seven degree of freedom force-reflective device able to produce haptic rendering on the human arm, either as master for teleoperation of a slave robot, or in interaction with a virtual reality. This project was conducted on behalf of the European Space Agency (ESA) as a prototype of the master device used for teleoperation of future anthropomorphic space robotic arms on the International Space Station (ISS). The motivation is to decrease the number of extravehicular activities of the astronauts, even for complex situations. The structure of portable anthropomorphic exoskeleton of 7 degrees of freedom has been selected by ESA because it allows a more intuitive control of anthropomorphic slave arms; it also allows multiple contact points, offers a larger workspace (comparable to the human arm). Besides, being attached on the astronaut, the system involves only internal forces (it is self-equilibrated) and can be used in zero-gravity.


Sign in / Sign up

Export Citation Format

Share Document