scholarly journals From LTL to Unambiguous Büchi Automata via Disambiguation of Alternating Automata

Author(s):  
Simon Jantsch ◽  
David Müller ◽  
Christel Baier ◽  
Joachim Klein
Author(s):  
Simon Jantsch ◽  
David Müller ◽  
Christel Baier ◽  
Joachim Klein

AbstractDue to the high complexity of translating linear temporal logic (LTL) to deterministic automata, several forms of “restricted” nondeterminism have been considered with the aim of maintaining some of the benefits of deterministic automata, while at the same time allowing more efficient translations from LTL. One of them is the notion of unambiguity. This paper proposes a new algorithm for the generation of unambiguous Büchi automata (UBA) from LTL formulas. Unlike other approaches it is based on a known translation from very weak alternating automata (VWAA) to NBA. A notion of unambiguity for alternating automata is introduced and it is shown that the VWAA-to-NBA translation preserves unambiguity. Checking unambiguity of VWAA is determined to be PSPACE-complete, both for the explicit and symbolic encodings of alternating automata. The core of the LTL-to-UBA translation is an iterative disambiguation procedure for VWAA. Several heuristics are introduced for different stages of the procedure. We report on an implementation of our approach in the tool and compare it to an existing LTL-to-UBA implementation in the tool set. Our experiments cover model checking of Markov chains, which is an important application of UBA.


2012 ◽  
Vol 22 (2) ◽  
pp. 203-235 ◽  
Author(s):  
TOMÁŠ BABIAK ◽  
VOJTĚCH ŘEHÁK ◽  
JAN STREJČEK

We introduce a new fragment of linear temporal logic (LTL) called LIO and a new class of Büchi automata (BA) called almost linear Büchi automata (ALBA). We provide effective translations between LIO and ALBA showing that the two formalisms are expressively equivalent. As we expect there to be applications of our results in model checking, we use two standard sources of specification formulae, namely Spec Patterns and BEEM, to study the practical relevance of the LIO fragment, and to compare our translation of LIO to ALBA with two standard translations of LTL to BA using alternating automata. Finally, we demonstrate that the LIO to ALBA translation can be much faster than the standard translation, and the resulting automata can be substantially smaller.


2014 ◽  
Vol 36 (6) ◽  
pp. 1235-1245
Author(s):  
Zhao-Wei HAN ◽  
Yong-Ming LI

2021 ◽  
Vol 180 (4) ◽  
pp. 351-373
Author(s):  
Denis Kuperberg ◽  
Laureline Pinault ◽  
Damien Pous

We propose a new algorithm for checking language equivalence of non-deterministic Büchi automata. We start from a construction proposed by Calbrix, Nivat and Podelski, which makes it possible to reduce the problem to that of checking equivalence of automata on finite words. Although this construction generates large and highly non-deterministic automata, we show how to exploit their specific structure and apply state-of-the art techniques based on coinduction to reduce the state-space that has to be explored. Doing so, we obtain algorithms which do not require full determinisation or complementation.


2021 ◽  
Author(s):  
Giuseppe De Giacomo ◽  
Antonio Di Stasio ◽  
Giuseppe Perelli ◽  
Shufang Zhu

We study the impact of the need for the agent to obligatorily instruct the action stop in her strategies. More specifically we consider synthesis (i.e., planning) for LTLf goals under LTL environment specifications in the case the agent must mandatorily stop at a certain point. We show that this obligation makes it impossible to exploit the liveness part of the LTL environment specifications to achieve her goal, effectively reducing the environment specifications to their safety part only. This has a deep impact on the efficiency of solving the synthesis, which can sidestep handling Buchi determinization associated to LTL synthesis, in favor of finite-state automata manipulation as in LTLf synthesis. Next, we add to the agent goal, expressed in LTLf, a safety goal, expressed in LTL. Safety goals must hold forever, even when the agent stops, since the environment can still continue its evolution. Hence the agent, before stopping, must ensure that her safety goal will be maintained even after she stops. To do synthesis in this case, we devise an effective approach that mixes a synthesis technique based on finite-state automata (as in the case of LTLf goals) and model-checking of nondeterministic Buchi automata. In this way, again, we sidestep Buchi automata determinization, hence getting a synthesis technique that is intrinsically simpler than standard LTL synthesis.


Sign in / Sign up

Export Citation Format

Share Document