A Deep Learning Design for Improving Topology Coherence in Blood Vessel Segmentation

Author(s):  
Ricardo J. Araújo ◽  
Jaime S. Cardoso ◽  
Hélder P. Oliveira
Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1067
Author(s):  
Dali Chen ◽  
Yingying Ao ◽  
Shixin Liu

Blood vessel segmentation methods based on deep neural networks have achieved satisfactory results. However, these methods are usually supervised learning methods, which require large numbers of retinal images with high quality pixel-level ground-truth labels. In practice, the task of labeling these retinal images is very costly, financially and in human effort. To deal with these problems, we propose a semi-supervised learning method which can be used in blood vessel segmentation with limited labeled data. In this method, we use the improved U-Net deep learning network to segment the blood vessel tree. On this basis, we implement the U-Net network-based training dataset updating strategy. A large number of experiments are presented to analyze the segmentation performance of the proposed semi-supervised learning method. The experiment results demonstrate that the proposed methodology is able to avoid the problems of insufficient hand-labels, and achieve satisfactory performance.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mir Tanvir Islam ◽  
Shafin T. Mashfu ◽  
Abrar Faisal ◽  
Sadman Chowdhury Siam ◽  
Intisar Tahmid Naheen ◽  
...  

2021 ◽  
Author(s):  
Sanjeewani NA ◽  
arun kumar yadav ◽  
Mohd Akbar ◽  
mohit kumar ◽  
Divakar Yadav

<div>Automatic retinal blood vessel segmentation is very crucial to ophthalmology. It plays a vital role in the early detection of several retinal diseases such as Diabetic Retinopathy, hypertension, etc. In recent times, deep learning based methods have attained great success in automatic segmentation of retinal blood vessels from images. In this paper, a U-NET based architecture is proposed to segment the retinal blood vessels from fundus images of the eye. Furthermore, 3 pre-processing algorithms are also proposed to enhance the performance of the system. The proposed architecture has provided significant results. On the basis of experimental evaluation on the publicly available DRIVE data set, it has been observed that the average accuracy (Acc) is .9577, sensitivity (Se) is .7436, specificity (Sp) is .9838 and F1-score is .7931. The proposed system outperforms all recent state of art approaches mentioned in the literature.</div>


2021 ◽  
Author(s):  
Sanjeewani NA ◽  
arun kumar yadav ◽  
Mohd Akbar ◽  
mohit kumar ◽  
Divakar Yadav

<div>Automatic retinal blood vessel segmentation is very crucial to ophthalmology. It plays a vital role in the early detection of several retinal diseases such as Diabetic Retinopathy, hypertension, etc. In recent times, deep learning based methods have attained great success in automatic segmentation of retinal blood vessels from images. In this paper, a U-NET based architecture is proposed to segment the retinal blood vessels from fundus images of the eye. Furthermore, 3 pre-processing algorithms are also proposed to enhance the performance of the system. The proposed architecture has provided significant results. On the basis of experimental evaluation on the publicly available DRIVE data set, it has been observed that the average accuracy (Acc) is .9577, sensitivity (Se) is .7436, specificity (Sp) is .9838 and F1-score is .7931. The proposed system outperforms all recent state of art approaches mentioned in the literature.</div>


Sign in / Sign up

Export Citation Format

Share Document