blood vessel segmentation
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 124)

H-INDEX

22
(FIVE YEARS 6)

2022 ◽  
Vol 71 (2) ◽  
pp. 2459-2476
Author(s):  
Sonali Dash ◽  
Sahil Verma ◽  
Kavita ◽  
N. Z. Jhanjhi ◽  
Mehedi Masud ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11907
Author(s):  
Chen Ding ◽  
Runze Li ◽  
Zhouyi Zheng ◽  
Youfa Chen ◽  
Dushi Wen ◽  
...  

Retinal blood vessel segmentation plays an important role for analysis of retinal diseases, such as diabetic retinopathy and glaucoma. However, retinal blood vessel segmentation remains a challenging task due to the low contrast between some vessels and background, the different presenting conditions caused by uneven illumination and the artificial segmentation results are influenced by human experience, which seriously affects the classification accuracy. To address this problem, we propose a multiple multi-scale neural networks knowledge transfer and integration method in order to accurately segment for retinal blood vessel image. With the integration of multi-scale networks and multi-scale input patches, the blood vessel segmentation performance is obviously improved. In addition, applying knowledge transfer to the network training process, the pre-trained network reduces the number of network training iterations. The experimental results on the DRIVE dataset and the CHASE_DB1 dataset show the effectiveness of the method, whose average accuracy on the two datasets are 96.74% and 97.38%, respectively.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2017
Author(s):  
Sonali Dash ◽  
Sahil Verma ◽  
Kavita Kavita ◽  
Md. Sameeruddin Khan ◽  
Marcin Wozniak ◽  
...  

Retinal blood vessels have been presented to contribute confirmation with regard to tortuosity, branching angles, or change in diameter as a result of ophthalmic disease. Although many enhancement filters are extensively utilized, the Jerman filter responds quite effectively at vessels, edges, and bifurcations and improves the visualization of structures. In contrast, curvelet transform is specifically designed to associate scale with orientation and can be used to recover from noisy data by curvelet shrinkage. This paper describes a method to improve the performance of curvelet transform further. A distinctive fusion of curvelet transform and the Jerman filter is presented for retinal blood vessel segmentation. Mean-C thresholding is employed for the segmentation purpose. The suggested method achieves average accuracies of 0.9600 and 0.9559 for DRIVE and CHASE_DB1, respectively. Simulation results establish a better performance and faster implementation of the suggested scheme in comparison with similar approaches seen in the literature.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6380
Author(s):  
Alexander Ze Hwan Ooi ◽  
Zunaina Embong ◽  
Aini Ismafairus Abd Hamid ◽  
Rafidah Zainon ◽  
Shir Li Wang ◽  
...  

Optometrists, ophthalmologists, orthoptists, and other trained medical professionals use fundus photography to monitor the progression of certain eye conditions or diseases. Segmentation of the vessel tree is an essential process of retinal analysis. In this paper, an interactive blood vessel segmentation from retinal fundus image based on Canny edge detection is proposed. Semi-automated segmentation of specific vessels can be done by simply moving the cursor across a particular vessel. The pre-processing stage includes the green color channel extraction, applying Contrast Limited Adaptive Histogram Equalization (CLAHE), and retinal outline removal. After that, the edge detection techniques, which are based on the Canny algorithm, will be applied. The vessels will be selected interactively on the developed graphical user interface (GUI). The program will draw out the vessel edges. After that, those vessel edges will be segmented to bring focus on its details or detect the abnormal vessel. This proposed approach is useful because different edge detection parameter settings can be applied to the same image to highlight particular vessels for analysis or presentation.


2021 ◽  
Author(s):  
Sanjeewani NA ◽  
arun kumar yadav ◽  
Mohd Akbar ◽  
mohit kumar ◽  
Divakar Yadav

<div>Automatic retinal blood vessel segmentation is very crucial to ophthalmology. It plays a vital role in the early detection of several retinal diseases such as Diabetic Retinopathy, hypertension, etc. In recent times, deep learning based methods have attained great success in automatic segmentation of retinal blood vessels from images. In this paper, a U-NET based architecture is proposed to segment the retinal blood vessels from fundus images of the eye. Furthermore, 3 pre-processing algorithms are also proposed to enhance the performance of the system. The proposed architecture has provided significant results. On the basis of experimental evaluation on the publicly available DRIVE data set, it has been observed that the average accuracy (Acc) is .9577, sensitivity (Se) is .7436, specificity (Sp) is .9838 and F1-score is .7931. The proposed system outperforms all recent state of art approaches mentioned in the literature.</div>


Sign in / Sign up

Export Citation Format

Share Document