vessel segmentation
Recently Published Documents


TOTAL DOCUMENTS

1112
(FIVE YEARS 489)

H-INDEX

50
(FIVE YEARS 12)

2022 ◽  
Vol 98 ◽  
pp. 107670
Author(s):  
Huadeng Wang ◽  
Guang Xu ◽  
Xipeng Pan ◽  
Zhenbing Liu ◽  
Ningning Tang ◽  
...  

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiacheng Li ◽  
Ruirui Li ◽  
Ruize Han ◽  
Song Wang

Abstract Background Retinal vessel segmentation benefits significantly from deep learning. Its performance relies on sufficient training images with accurate ground-truth segmentation, which are usually manually annotated in the form of binary pixel-wise label maps. Manually annotated ground-truth label maps, more or less, contain errors for part of the pixels. Due to the thin structure of retina vessels, such errors are more frequent and serious in manual annotations, which negatively affect deep learning performance. Methods In this paper, we develop a new method to automatically and iteratively identify and correct such noisy segmentation labels in the process of network training. We consider historical predicted label maps of network-in-training from different epochs and jointly use them to self-supervise the predicted labels during training and dynamically correct the supervised labels with noises. Results We conducted experiments on the three datasets of DRIVE, STARE and CHASE-DB1 with synthetic noises, pseudo-labeled noises, and manually labeled noises. For synthetic noise, the proposed method corrects the original noisy label maps to a more accurate label map by 4.0–$$9.8\%$$ 9.8 % on $$F_1$$ F 1 and 10.7–$$16.8\%$$ 16.8 % on PR on three testing datasets. For the other two types of noise, the method could also improve the label map quality. Conclusions Experiment results verified that the proposed method could achieve better retinal image segmentation performance than many existing methods by simultaneously correcting the noise in the initial label map.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Congjun Liu ◽  
Penghui Gu ◽  
Zhiyong Xiao

Retinal vessel segmentation is essential for the detection and diagnosis of eye diseases. However, it is difficult to accurately identify the vessel boundary due to the large variations of scale in the retinal vessels and the low contrast between the vessel and the background. Deep learning has a good effect on retinal vessel segmentation since it can capture representative and distinguishing features for retinal vessels. An improved U-Net algorithm for retinal vessel segmentation is proposed in this paper. To better identify vessel boundaries, the traditional convolutional operation CNN is replaced by a global convolutional network and boundary refinement in the coding part. To better divide the blood vessel and background, the improved position attention module and channel attention module are introduced in the jumping connection part. Multiscale input and multiscale dense feature pyramid cascade modules are used to better obtain feature information. In the decoding part, convolutional long and short memory networks and deep dilated convolution are used to extract features. In public datasets, DRIVE and CHASE_DB1, the accuracy reached 96.99% and 97.51%. The average performance of the proposed algorithm is better than that of existing algorithms.


2022 ◽  
Vol 71 (2) ◽  
pp. 2459-2476
Author(s):  
Sonali Dash ◽  
Sahil Verma ◽  
Kavita ◽  
N. Z. Jhanjhi ◽  
Mehedi Masud ◽  
...  

2022 ◽  
Vol 71 ◽  
pp. 103169
Author(s):  
Tariq M. Khan ◽  
Mohammad A.U. Khan ◽  
Naveed Ur Rehman ◽  
Khuram Naveed ◽  
Imran Uddin Afridi ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 403
Author(s):  
Lin Pan ◽  
Zhen Zhang ◽  
Shaohua Zheng ◽  
Liqin Huang

Automatic segmentation and centerline extraction of blood vessels from retinal fundus images is an essential step to measure the state of retinal blood vessels and achieve the goal of auxiliary diagnosis. Combining the information of blood vessel segments and centerline can help improve the continuity of results and performance. However, previous studies have usually treated these two tasks as separate research topics. Therefore, we propose a novel multitask learning network (MSC-Net) for retinal vessel segmentation and centerline extraction. The network uses a multibranch design to combine information between two tasks. Channel and atrous spatial fusion block (CAS-FB) is designed to fuse and correct the features of different branches and different scales. The clDice loss function is also used to constrain the topological continuity of blood vessel segments and centerline. Experimental results on different fundus blood vessel datasets (DRIVE, STARE, and CHASE) show that our method can obtain better segmentation and centerline extraction results at different scales and has better topological continuity than state-of-the-art methods.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261698
Author(s):  
Mohsin Raza ◽  
Khuram Naveed ◽  
Awais Akram ◽  
Nema Salem ◽  
Amir Afaq ◽  
...  

In this era, deep learning-based medical image analysis has become a reliable source in assisting medical practitioners for various retinal disease diagnosis like hypertension, diabetic retinopathy (DR), arteriosclerosis glaucoma, and macular edema etc. Among these retinal diseases, DR can lead to vision detachment in diabetic patients which cause swelling of these retinal blood vessels or even can create new vessels. This creation or the new vessels and swelling can be analyzed as biomarker for screening and analysis of DR. Deep learning-based semantic segmentation of these vessels can be an effective tool to detect changes in retinal vasculature for diagnostic purposes. This segmentation task becomes challenging because of the low-quality retinal images with different image acquisition conditions, and intensity variations. Existing retinal blood vessels segmentation methods require a large number of trainable parameters for training of their networks. This paper introduces a novel Dense Aggregation Vessel Segmentation Network (DAVS-Net), which can achieve high segmentation performance with only a few trainable parameters. For faster convergence, this network uses an encoder-decoder framework in which edge information is transferred from the first layers of the encoder to the last layer of the decoder. Performance of the proposed network is evaluated on publicly available retinal blood vessels datasets of DRIVE, CHASE_DB1, and STARE. Proposed method achieved state-of-the-art segmentation accuracy using a few number of trainable parameters.


Sign in / Sign up

Export Citation Format

Share Document