FVCNN: Fusion View Convolutional Neural Networks for Non-rigid 3D Shape Classification and Retrieval

Author(s):  
Yan Zhou ◽  
Fanzhi Zeng ◽  
Jiechang Qian ◽  
Yang Xiang ◽  
Zhijian Feng
2019 ◽  
Vol 49 (4) ◽  
pp. 436-449
Author(s):  
Pengyu WANG ◽  
Panpan SHUI ◽  
Fenggen YU ◽  
Yuan GAN ◽  
Kun LIU ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3718 ◽  
Author(s):  
Hieu Nguyen ◽  
Yuzeng Wang ◽  
Zhaoyang Wang

Single-shot 3D imaging and shape reconstruction has seen a surge of interest due to the ever-increasing evolution in sensing technologies. In this paper, a robust single-shot 3D shape reconstruction technique integrating the structured light technique with the deep convolutional neural networks (CNNs) is proposed. The input of the technique is a single fringe-pattern image, and the output is the corresponding depth map for 3D shape reconstruction. The essential training and validation datasets with high-quality 3D ground-truth labels are prepared by using a multi-frequency fringe projection profilometry technique. Unlike the conventional 3D shape reconstruction methods which involve complex algorithms and intensive computation to determine phase distributions or pixel disparities as well as depth map, the proposed approach uses an end-to-end network architecture to directly carry out the transformation of a 2D image to its corresponding 3D depth map without extra processing. In the approach, three CNN-based models are adopted for comparison. Furthermore, an accurate structured-light-based 3D imaging dataset used in this paper is made publicly available. Experiments have been conducted to demonstrate the validity and robustness of the proposed technique. It is capable of satisfying various 3D shape reconstruction demands in scientific research and engineering applications.


2021 ◽  
Author(s):  
Martin Mirbauer ◽  
Miroslav Krabec ◽  
Jaroslav Křivánek ◽  
Elena Šikudová

<div> <div> <div> <p>Classification of 3D objects – the selection of a category in which each object belongs – is of great interest in the field of machine learning. Numerous researchers use deep neural networks to address this problem, altering the network architecture and representation of the 3D shape used as an input. To investigate the effectiveness of their approaches, we conduct an extensive survey of existing methods and identify common ideas by which we categorize them into a taxonomy. Second, we evaluate 11 selected classification networks on three 3D object datasets, extending the evaluation to a larger dataset on which most of the selected approaches have not been tested yet. For this, we provide a framework for converting shapes from common 3D mesh formats into formats native to each network, and for training and evaluating different classification approaches on this data. Despite being generally unable to reach the accuracies reported in the original papers, we can compare the relative performance of the approaches as well as their performance when changing datasets as the only variable to provide valuable insights into performance on different kinds of data. We make our code available to simplify running training experiments with multiple neural networks with different prerequisites. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document