High Performance Materials for Concrete Bridge Construction

Author(s):  
George Morcous ◽  
Marc Maguire ◽  
Maher K. Tadros
2012 ◽  
Vol 256-259 ◽  
pp. 1548-1553 ◽  
Author(s):  
Yue Huang ◽  
He Hui Zheng ◽  
Min Wang ◽  
Xing Fa Wu

The short line match-cast method of precast segments has proved to be the most versatile and reliable way to concrete bridge construction. The success of match-cast method relies heavily on accurate geometry control in precasting as the scale of adjustments during erection is very small and difficult to implement. So the required levels of accuracy in segments match-casting are stringent in order to assure erection accuracy. Therefore, the research on segments match-casting and geometry control technique of space distorted segments are very important.Based on the principle of match-casting using the short-line method, the geometry control technology of transition curve section in cross-sea bridge erected by precasting segment girder is proposed. As an example of south approach spans in north branch of Xia-zhang Cross-sea Bridge, this paper will provide a reference for the construction of similar bridges.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6964
Author(s):  
Mohamed Abokifa ◽  
Mohamed A. Moustafa

Full-depth precast bridge decks are widely used to expedite bridge construction and enhance durability. These deck systems face the challenge that their durability and performance are usually dictated by the effectiveness of their field joints and closure joint materials. Hence, commercial ultra-high performance concrete (UHPC) products have gained popularity for use in such joints because of their superior mechanical properties. However, the proprietary and relatively expensive nature of the robust UHPC mixes may pose some limitations on their future implementation. For these reasons, many research agencies along with state departments of transportation sought their way to develop cheaper non-proprietary UHPC (NP-UHPC) mixes using locally supplied materials. The objective of this study is to demonstrate the full-scale application of the recently developed NP-UHPC mixes at the ABC-UTC (accelerated bridge construction university transportation center) in transverse field joints of precast bridge decks. This study included experimental testing of three full-scale precast bridge deck subassemblies with transverse NP-UHPC field joints under static vertical loading. The test parameters included NP-UHPC mixes with different steel fibers amount, different joint splice details, and joint widths. The results of this study were compared with the results of a similar proprietary UHPC reference specimen. The structural behavior of the test specimens was evaluated in terms of the load versus deflection, reinforcement and concrete strains, and full assessment of the field joint performance. The study showed that the proposed NP-UHPC mixes and field joint details can be efficiently used in the transverse deck field joints with comparable behavior to the proprietary UHPC joints. The study concluded that the proposed systems remained elastic under the target design service and ultimate loads. In addition, the study showed that the use of reinforcement loop splices enhanced the load distribution across the specimen’s cross-section.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Renda Zhao ◽  
Kaifeng Zheng ◽  
Xing Wei ◽  
Hongyu Jia ◽  
Haili Liao ◽  
...  

AbstractBridge construction is one of the cores of traffic infrastructure construction. To better develop relevant bridge science, this paper introduces the main research progress in China and abroad in 2020 from 16 aspects. The content consists of four major categories in 16 aspects. The first part is about the bridge structure, including concrete bridge and high-performance materials, steel bridges, composite girders. The second part is about the bridge disaster prevention and mitigation, including bridge seismic resistance, wind resistance of bridge, train-bridge coupling vibration research, bridge hydrodynamics, the durability of the concrete bridges, fatigue of steel bridge, temperature field and temperature effect of bridge; The third part is about the bridge analyses, including numerical simulation of bridge structure, box girder and cable-stayed bridge analysis theories. The last part is concerning the bridge emerging technologies, including bridge informatization and intelligent bridge, the technology in bridge structure test, bridge assessment and reinforcement, prefabricated concrete bridge structure.


2019 ◽  
Vol 271 ◽  
pp. 07008
Author(s):  
William Toledo ◽  
Leticia Davila ◽  
Ahmed Al-Basha ◽  
Craig Newtson ◽  
Brad Weldon

This paper investigates the shrinkage and thermal effects of an ultra-high performance concrete (UHPC) mixture proposed for use as an overlay material for concrete bridge decks. In this study, early-age and longer-term shrinkage tests were performed on the locally produced UHPC. Thermal and shrinkage effects in normal strength concrete slabs overlaid with UHPC were also observed. Early-age shrinkage testing showed that approximately 55% of the strain occurred in the plastic state and may not contribute to bond stresses since the elastic modulus of the UHPC should be small at such early ages. Thickness of the substrate and amount of reinforcing steel were important factors for shrinkage in the slabs. The thickest slab experienced greater shrinkage than thinner slabs. Comparing this slab to a thinner slab with the same reinforcement indicated that reinforcement ratio is more important than the area of steel.


Author(s):  
Yumin Yang ◽  
John J. Myers

Prestress losses have a direct impact on concrete stress development and deflection behavior of highway bridge members. A poor estimate of prestress losses can result in a structure in which allowable stresses are exceeded or camber and deflection behavior is poorly predicted, such that the serviceability of a structure may be adversely affected. This paper reports the prestress losses observed throughout fabrication, shipment, erection, and the first 2 years of service for the first high-performance superstructure concrete bridge in Missouri. The prestress losses investigated included prerelease losses, elastic shortening losses, relaxation losses, creep losses, and shrinkage losses. Results from the study were compared with eight commonly used loss estimate models for total prestress losses, including AASHTO and Prestressed Concrete Institute methods. Recommendations were proposed by the authors for the most appropriate methodology to use to predict prestress losses in high-strength concrete girders accurately.


Sign in / Sign up

Export Citation Format

Share Document