Strain Energy Density Failure Criterion: Mixed-Mode Crack Growth

Author(s):  
Emmanuel E. Gdoutos
2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Tawakol Ahmed Enab ◽  
Hasnaa W. Taha ◽  
Mohamed A. N. Shabara ◽  
Ahmed M. Galal

The crack growth in metallic materials using fast and reliable simulations of 2-D and linear elastic finite element models is investigated. The effect of the stress intensity factor in mode I and II (KI, KII) on the fracture behavior of stainless steel and the associated strain energy density factor in mixed mode crack propagation were studied numerically to determine crack propagation angle θ in linear elastic fracture investigation. In order to implement the determination of the crack propagation direction using the strain energy density criterion S, the numerical finite element program ANSYS was used. ANSYS APDL macros were developed to generate the geometry, material properties, boundary conditions and mesh size of the model for the conducted analyses. To demonstrate the capability of crack propagation trajectories using the proposed method under mixed mode situation, an edge crack specimen was considered with initial crack having the same length but at different inclination angles under a uniaxial tension load. Results obtained from the developed models had a good agreement (average deviation of 4.63%) with the results available in the literatures.


Sign in / Sign up

Export Citation Format

Share Document