scholarly journals Crack Growth Direction in Mixed Mode Loading: A Strain Energy Density Approach

2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Tawakol Ahmed Enab ◽  
Hasnaa W. Taha ◽  
Mohamed A. N. Shabara ◽  
Ahmed M. Galal

The crack growth in metallic materials using fast and reliable simulations of 2-D and linear elastic finite element models is investigated. The effect of the stress intensity factor in mode I and II (KI, KII) on the fracture behavior of stainless steel and the associated strain energy density factor in mixed mode crack propagation were studied numerically to determine crack propagation angle θ in linear elastic fracture investigation. In order to implement the determination of the crack propagation direction using the strain energy density criterion S, the numerical finite element program ANSYS was used. ANSYS APDL macros were developed to generate the geometry, material properties, boundary conditions and mesh size of the model for the conducted analyses. To demonstrate the capability of crack propagation trajectories using the proposed method under mixed mode situation, an edge crack specimen was considered with initial crack having the same length but at different inclination angles under a uniaxial tension load. Results obtained from the developed models had a good agreement (average deviation of 4.63%) with the results available in the literatures.

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Yahya Ali Fageehi

This paper presents computational modeling of a crack growth path under mixed-mode loadings in linear elastic materials and investigates the influence of a hole on both fatigue crack propagation and fatigue life when subjected to constant amplitude loading conditions. Though the crack propagation is inevitable, the simulation specified the crack propagation path such that the critical structure domain was not exceeded. ANSYS Mechanical APDL 19.2 was introduced with the aid of a new feature in ANSYS: Smart Crack growth technology. It predicts the propagation direction and subsequent fatigue life for structural components using the extended finite element method (XFEM). The Paris law model was used to evaluate the mixed-mode fatigue life for both a modified four-point bending beam and a cracked plate with three holes under the linear elastic fracture mechanics (LEFM) assumption. Precise estimates of the stress intensity factors (SIFs), the trajectory of crack growth, and the fatigue life by an incremental crack propagation analysis were recorded. The findings of this analysis are confirmed in published works in terms of crack propagation trajectories under mixed-mode loading conditions.


Author(s):  
P. J. Huffman ◽  
J. Ferreira ◽  
J.A.F.O. Correia ◽  
A.M.P. De Jesus ◽  
G. Lesiuk ◽  
...  

Fatigue crack growth (FCG) rates have traditionally been formulated from fracture mechanics, whereas fatigue crack initiation has been empirically described using stress-life or strain-life methods. More recently, there has been efforts towards the use of the local stress-strain and similitude concepts to formulate fatigue crack growth rates. A new model has been developed which derives stress-life, strain-life and fatigue crack growth rates from strain energy density concepts. This new model has the advantage to predict an intrinsic stress ratio effect of the form ?ar=(?amp)?·(?max )(1-?), which is dependent on the cyclic stress-strain behaviour of the material. This new fatigue crack propagation model was proposed by Huffman based on Walkerlike strain-life relation. This model is applied to FCG data available for the P355NL1 pressure vessel steel. A comparison of the experimental results and the Huffman crack propagation model is made.


Author(s):  
Abdelwahab Zerrouki ◽  
Abdelkader Boulenouar ◽  
Mohamed Mazari ◽  
Mohamed Benguediab

In this paper, an experimental and a numerical analysis were carried out using High density polyethylene (HDPE). Sheets with an initial central crack (CCT specimens) inclined with a given angle are investigated and compared to the loading direction. The kinking angle is experimentally predicted and numerically evaluated under mixed mode (I+II), as a function of the strain energy density (SED) around the crack-tip, using the Ansys Parametric Design Language (APDL).According to the experimental observations and numerical analysis, the plan of crack propagation is perpendicular to the loading direction. Moreover, as suggested by Sih in the framework of linear elastic fracture mechanics (LEFM), the minimum values Sminof the factor S are reached at the points corresponding to the crack propagation direction. These results suggest that the concept of the strain energy- density factor can be used as an indicator of the crack propagation direction.


2001 ◽  
Vol 36 (6) ◽  
pp. 579-594 ◽  
Author(s):  
Z-C Lin ◽  
Y-Y Lin

If the workpiece material experiences tremendous strain during the chip formation process or brittle material undergoes fracture in the primary deformation zone when the chip is only partly formed, the segmented chip formed under the above conditions is called a discontinuous chip. With the introduction of the tool inclination angle geometry, an elastic-plastic finite element model is developed for oblique cutting of discontinuous chip. The tool is P20 while the workpiece is made of 6-4 brass. The initial crack location, the direction of crack growth and variations of discrete chips are examined under the condition of a low cutting speed. These predictions are made possible by application of the strain energy density theory. The initial crack was formed in the (d W/d V)maxmin region (i.e. the maximum region among many of the strain energy density minima) of the chip surface and grew progressively along the stationary values of the strain energy density function. The direction of crack growth was based on the maximum strain energy density curve along the surface. The fracture process on the other chip layers was identical with that on the chip surface and occurred in sequence until it reached the chip free surface. The plastic deformation and friction result in a high equivalent stress on the chip surface above the tool tip, especially at the place of crack formation. As more residual stress is present after cutting, degradation of the workpiece prevails and should be accounted for.


Sign in / Sign up

Export Citation Format

Share Document