Analysis of Viscous Fluid Flows: An Approach by Evolution Equations

Author(s):  
Matthias Hieber
Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1860
Author(s):  
Eugene Talygin ◽  
Alexander Gorodkov

Previously, it has been shown that the dynamic geometric configuration of the flow channel of the left heart and aorta corresponds to the direction of the streamlines of swirling flow, which can be described using the exact solution of the Navier–Stokes and continuity equations for the class of centripetal swirling viscous fluid flows. In this paper, analytical expressions were obtained. They describe the functions C0t and Г0t, included in the solutions, for the velocity components of such a flow. These expressions make it possible to relate the values of these functions to dynamic changes in the geometry of the flow channel in which the swirling flow evolves. The obtained expressions allow the reconstruction of the dynamic velocity field of an unsteady potential swirling flow in a flow channel of arbitrary geometry. The proposed approach can be used as a theoretical method for correct numerical modeling of the blood flow in the heart chambers and large arteries, as well as for developing a mathematical model of blood circulation, considering the swirling structure of the blood flow.


2020 ◽  
Vol 52 (1) ◽  
pp. 21-36 ◽  
Author(s):  
T.R. Akylas

David J. Benney (1930–2015) was an applied mathematician and fluid dynamicist whose highly original work has shaped our understanding of nonlinear wave and instability processes in fluid flows. This article discusses the new paradigm he pioneered in the study of nonlinear phenomena, which transcends fluid mechanics, and it highlights the common threads of his research contributions, namely, resonant nonlinear wave interactions; the derivation of nonlinear evolution equations, including the celebrated nonlinear Schrödinger equation for modulated wave trains; and the significance of three-dimensional disturbances in shear flow instability and transition.


Sign in / Sign up

Export Citation Format

Share Document