gravitational forces
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 84)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Author(s):  
James Bushong ◽  
Henry Bushong

Conventional theory suggests that black holes are singularities of enormous mass-density: matter compressed beyond imagination due to extreme mass-based gravitational forces and possessing so much mass-based gravity that light itself cannot escape them. As an alternative to convention, this paper builds on the theories of fire-tornado accretion cylinder vortex forces and colossal magnetic pressure spawned within (previously described by the authors in their paper on ~2D planar celestial kinematics), and analyzes them in more detail specifically for black holes and the formation / evolution of galaxies. Several interesting charge-distribution and associated electromagnetic field components will be utilized in the modeling. To demonstrate concept, the proposed forces during formation and evolution will be computationally modeled and translated into visual simulations in 4-D space-time using C# programming in the Unity operating platform.


2021 ◽  
Vol 9 ◽  
Author(s):  
Knut Jørgen Måløy ◽  
Marcel Moura ◽  
Alex Hansen ◽  
Eirik Grude Flekkøy ◽  
Renaud Toussaint

We present a theoretical and experimental investigation of drainage in porous media. The study is limited to stabilized fluid fronts at moderate injection rates, but it takes into account capillary, viscous, and gravitational forces. In the theoretical framework presented, the work applied on the system, the energy dissipation, the final saturation and the width of the stabilized fluid front can all be calculated if we know the dimensionless fluctuation number, the wetting properties, the surface tension between the fluids, the fractal dimensions of the invading structure and its boundary, and the exponent describing the divergence of the correlation length in percolation. Furthermore, our theoretical description explains how the Haines jumps’ local activity and dissipation relate to dissipation on larger scales.


2021 ◽  
Author(s):  
Abdul Wahab ◽  
Mrugesh Shringarpure ◽  
David Hoyal ◽  
Kyle Straub

Abstract Limited observations of active turbidity currents at field scales challenges the development of theory that links flow dynamics to the morphology of submarine fans. Here we offer a framework for predicting submarine fan morphologies by simplifying critical environmental forcings such as regional slopes and properties of sediments, through densimetric Froude (ratio of inertial to gravitational forces) and Rouse numbers (ratio of settling velocity of sediments to shear velocity) of turbidity currents. We leverage a depth-average process-based numerical model to simulate an array of submarine fans and measure rugosity as a proxy for their morphological complexity. We show a systematic increase in rugosity by either increasing the densimetric Froude number or decreasing the Rouse number of turbidity currents. These trends reflect gradients in the dynamics of channel migration on the fan surface and help discriminate submarine fans that effectively sequester organic carbon rich mud in deep ocean strata.


2021 ◽  
Vol 5 (4) ◽  
pp. 250
Author(s):  
Ali Mubaraki ◽  
Saad Althobaiti ◽  
Rahmatullah Ibrahim Nuruddeen

The present manuscript focuses on the study of surface wave propagation in a rotating coated viscoelastic half-space and its response to external forces comprised of the magnetic field and gravitational forces. A celebrated normal mode analysis procedure is adopted as the methodology of interest for its high level of efficiency in the literature. The analytically obtained frequency equation is analyzed for certain scenarios of curiosity, in addition to the determination of the resulting displacements and stresses. Moreover, certain physical data of relevance with the viscoelasticity index of unity are considered for the numerical simulations. As for the findings, the presented graphical illustrations showed that both the magnetic field and rotation positively accelerated the dispersion of surface waves in the coated half-space, while the obtained approximate fields in the half-space are found to be oscillatory as they steadily move towards the limiting point.


2021 ◽  
Vol 923 (2) ◽  
pp. 271
Author(s):  
C. S. Ng ◽  
A. Bhattacharjee

Abstract We consider the spectrum of eigenmodes in a stellar system dominated by gravitational forces in the limit of zero collisions. We show analytically and numerically using the Lenard–Bernstein collision operator that the Landau modes, which are not true eigenmodes in a strictly collisionless system (except for the Jeans unstable mode), become part of the true eigenmode spectrum in the limit of zero collisions. Under these conditions, the continuous spectrum of true eigenmodes in a collisionless system, also known as the Case–van Kampen modes, is eliminated. Furthermore, because the background distribution function in a weakly collisional system can exhibit significant deviations from a Maxwellian distribution function over long times, we show that the spectrum of Landau modes can change drastically even in the presence of slight deviations from a Maxwellian, primarily through the appearance of weakly damped modes that may be otherwise heavily damped for a Maxwellian distribution. Our results provide important insights for developing statistical theories to describe thermal fluctuations in a stellar system, which are currently a subject of great interest for N-body simulations as well as observations of gravitational systems.


2021 ◽  
Vol 133 (11-12) ◽  
Author(s):  
Joseph O’Leary ◽  
Jean-Pierre Barriot

AbstractSpacecraft propagation tools describe the motion of near-Earth objects and interplanetary probes using Newton’s theory of gravity supplemented with the approximate general relativistic n-body Einstein–Infeld–Hoffmann equations of motion. With respect to the general theory of relativity and the long-standing recommendations of the International Astronomical Union for astrometry, celestial mechanics and metrology, we believe modern orbitography software is now reaching its limits in terms of complexity. In this paper, we present the first results of a prototype software titled General Relativistic Accelerometer-based Propagation Environment (GRAPE). We describe the motion of interplanetary probes and spacecraft using extended general relativistic equations of motion which account for non-gravitational forces using end-user supplied accelerometer data or approximate dynamical models. We exploit the unique general relativistic quadratic invariant associated with the orthogonality between four-velocity and acceleration and simulate the perturbed orbits for Molniya, Parker Solar Probe and Mercury Planetary Orbiter-like test particles subject to a radiation-like four-force. The accuracy of the numerical procedure is maintained using a 5-stage, $$10^\mathrm{th}$$ 10 th -order structure-preserving Gauss collocation symplectic integration scheme. GRAPE preserves the norm of the tangent vector to the test particle worldline at the order of $$10^{-32}$$ 10 - 32 .


2021 ◽  
Vol 2103 (1) ◽  
pp. 012233
Author(s):  
I V Volodin ◽  
A A Alabuzhev

Abstract In the present paper a dynamics of a thin ferrofluid film under the vertical vibration in a static magnetic field is examined. The vibrational amplitude is assumed to be greater than film thickness so that vibrational force is greater than magnetic and gravitational forces. The pulsating part and the averaged part of the hydrodynamics fields are obtained. The solution of pulsating part for the traveling surface wave is found. The equation for the averaged surface profile is found.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012041
Author(s):  
Alexander Titov ◽  
Alexander Khoperskov ◽  
Sergey Khrapov

Abstract The process of collision of two multicomponent galaxies is considered in detail based on numerical simulations of the dynamics of gravitating gas, stars and dark mass. To solve the equations of motion of the gas component, we use the Smoothed Particle Hydrodynamics method. Modeling of collisionless components is based on the N-body model. The computations of gravitational forces are carried out using both the approximate hierarchical TreeCode algorithm and the direct method of summing the gravitational contribution from all particles, which provides an accurate solution. This approach allows testing various models and evaluating the resulting errors associated with the calculation of gravitational forces and a finite number of particles in each of the components. Both methods for calculating gravity are software implemented as parallel codes for Nvidia Tesla GPUs. The estimates of the lost mass and the efficiency of matter exchange between galaxies are discussed depending on the model parameters.


Author(s):  
Ayatri Singha ◽  
Stefan Hild ◽  
Jan Harms ◽  
Maria Concetta Tringali ◽  
Irene Fiori ◽  
...  

Abstract Fluctuations of gravitational forces cause so-called Newtonian noise (NN) in gravitational-wave (GW) detectors which is expected to limit their low-frequency sensitivity in upcoming observing runs. Seismic NN is produced by seismic waves passing near a detector's suspended test masses. It is predicted to be the strongest contribution to NN. Modeling this contribution accurately is a major challenge. Arrays of seismometers were deployed at the Virgo site to characterize the seismic field near the four test masses. In this paper, we present results of a spectral analysis of the array data from one of Virgo's end buildings to identify dominant modes of the seismic field. Some of the modes can be associated with known seismic sources. Analyzing the modes over a range of frequencies, we provide a dispersion curve of Rayleigh waves. We find that the Rayleigh speed in the NN frequency band 10\,Hz--20\,Hz is very low ($\lesssim$100\,m/s), which has important consequences for Virgo's seismic NN. Using the new speed estimate, we find that the recess formed under the suspended test masses by a basement level at the end buildings leads to a 10 fold reduction of seismic NN.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nithya Subramani ◽  
Sangeetha M ◽  
Vijayaraja Kengaiah ◽  
Sai Prakash

Purpose The purpose of this paper is to find the droplets impact on the airplane wing structure. Two kinds of characteristics of the droplet at different velocity and viscosity are assumed. The droplet is assumed to be spherical cubic form and it is injected from the convergent divergent nozzle with a passive control. Design/methodology/approach This paper presents the results of a numerical simulation of droplet impact on the horizontal surface. The effects of impact parameters are studied. The splash effect of the droplet also visualized. The results are presented in form of stress, strain, displacement magnitude of the droplet. Findings Crosswire is used as passive control. The behavior of the droplet impact is observed based on the kinetic energy and the gravitational forces. Originality/value The results predict that smooth particle hydrodynamic designed droplet not only depend on the equation of state of the droplet but also the injection velocity from the nozzle. It also determined that droplet velocity is depending on the viscosity of the fluid.


Sign in / Sign up

Export Citation Format

Share Document