Discontinuous Integral Control for Systems with Arbitrary Relative Degree

Author(s):  
Jaime A. Moreno ◽  
Emmanuel Cruz-Zavala ◽  
Ángel Mercado-Uribe
Author(s):  
L.H. Holthuijsen ◽  
N. Booij ◽  
M. van Endt ◽  
S. Caires ◽  
C. Guedes Soares

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3852
Author(s):  
Daniel Plörer ◽  
Sascha Hammes ◽  
Martin Hauer ◽  
Vincent van Karsbergen ◽  
Rainer Pfluger

A significant proportion of the total energy consumption in office buildings is attributable to lighting. Enhancements in energy efficiency are currently achieved through strategies to reduce artificial lighting by intelligent daylight utilization. Control strategies in the field of daylighting and artificial lighting are mostly rule-based and focus either on comfort aspects or energy objectives. This paper aims to provide an overview of published scientific literature on enhanced control strategies, in which new control approaches are critically analysed regarding the fulfilment of energy efficiency targets and comfort criteria simultaneously. For this purpose, subject-specific review articles from the period between 2015 and 2020 and their research sources from as far back as 1978 are analysed. Results show clearly that building controls increasingly need to address multiple trades to achieve a maximum improvement in user comfort and energy efficiency. User acceptance can be highlighted as a decisive factor in achieving targeted system efficiencies, which are highly determined by the ability of active user interaction in the automatic control system. The future trend is moving towards decentralized control concepts including appropriate occupancy detection and space zoning. Simulation-based controls and learning systems are identified as appropriate methods that can play a decisive role in reducing building energy demand through integral control concepts.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Rabha W. Ibrahim ◽  
Dania Altulea ◽  
Rafida M. Elobaid

AbstractRecently, various studied were presented to describe the population dynamic of covid-19. In this effort, we aim to introduce a different vitalization of the growth by using a controller term. Our method is based on the concept of conformable calculus, which involves this term. We investigate a system of coupled differential equations, which contains the dynamics of the diffusion among infected and asymptomatic characters. Strong control is considered due to the social separation. The result is consequently associated with a macroscopic law for the population. This dynamic system is useful to recognize the behavior of the growth rate of the infection and to confirm if its control is correctly functioning. A unique solution is studied under self-mapping properties. The periodicity of the solution is examined by using integral control and the optimal control is discussed in the sequel.


Sign in / Sign up

Export Citation Format

Share Document