Green’s Function of a Spin- 1 2 $$\tfrac {1}{2}$$ Particle in a Constant External Magnetic Field

2020 ◽  
pp. 485-497
Author(s):  
Walter Dittrich ◽  
Martin Reuter
Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 146
Author(s):  
Alessandro Coretti ◽  
Lamberto Rondoni ◽  
Sara Bonella

We illustrate how, contrary to common belief, transient Fluctuation Relations (FRs) for systems in constant external magnetic field hold without the inversion of the field. Building on previous work providing generalized time-reversal symmetries for systems in parallel external magnetic and electric fields, we observe that the standard proof of these important nonequilibrium properties can be fully reinstated in the presence of net dissipation. This generalizes recent results for the FRs in orthogonal fields—an interesting but less commonly investigated geometry—and enables direct comparison with existing literature. We also present for the first time a numerical demonstration of the validity of the transient FRs with nonzero magnetic field via nonequilibrium molecular dynamics simulations of a realistic model of liquid NaCl.


2018 ◽  
Vol 32 (10) ◽  
pp. 1850114
Author(s):  
B. Machet

The 1-loop self-energy of a Dirac electron of mass [Formula: see text] propagating in a thin medium simulating graphene in an external magnetic field [Formula: see text] is investigated in quantum field theory. Equivalence is shown with the so-called reduced QED[Formula: see text] on a 2-brane. Schwinger-like methods are used to calculate the self-mass [Formula: see text] of the electron when it lies in the lowest Landau level. Unlike in standard QED[Formula: see text], it does not vanish at the limit [Formula: see text]: [Formula: see text] on-mass-shell renormalization conditions (with [Formula: see text]); all Landau levels of the virtual electron are taken into account and are implemented. Restricting to the sole lowest Landau level of the virtual electron is explicitly shown to be inadequate. Resummations at higher orders lie beyond the scope of this work.


1981 ◽  
Vol 59 (10) ◽  
pp. 1354-1358
Author(s):  
Gerry McKeon

The propagation of a Z meson in a homogeneous magnetic field is studied in the context of the Salam–Weinberg model. One loop corrections to the Z propagator can contain charged virtual particles, leading to an effective interaction with a constant external magnetic field. Only the contribution of virtual charged fermions are considered in this paper.


Sign in / Sign up

Export Citation Format

Share Document