Recovering Super-Resolution Generative Adversarial Network for Underwater Images

Author(s):  
Yang Chen ◽  
Jinxuan Sun ◽  
Wencong Jiao ◽  
Guoqiang Zhong
2021 ◽  
Vol 58 (8) ◽  
pp. 0810005
Author(s):  
查体博 Zha Tibo ◽  
罗林 Luo Lin ◽  
杨凯 Yang Kai ◽  
张渝 Zhang Yu ◽  
李金龙 Li Jinlong

Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


Author(s):  
Kalpesh Prajapati ◽  
Vishal Chudasama ◽  
Heena Patel ◽  
Kishor Upla ◽  
Kiran Raja ◽  
...  

Author(s):  
Trong-An Bui ◽  
Pei-Jun Lee ◽  
Kuan-Min Lee ◽  
Walter Wang ◽  
Shiual-Hal Shiu

Author(s):  
F. Pineda ◽  
V. Ayma ◽  
C. Beltran

Abstract. High-resolution satellite images have always been in high demand due to the greater detail and precision they offer, as well as the wide scope of the fields in which they could be applied; however, satellites in operation offering very high-resolution (VHR) images has experienced an important increase, but they remain as a smaller proportion against existing lower resolution (HR) satellites. Recent models of convolutional neural networks (CNN) are very suitable for applications with image processing, like resolution enhancement of images; but in order to obtain an acceptable result, it is important, not only to define the kind of CNN architecture but the reference set of images to train the model. Our work proposes an alternative to improve the spatial resolution of HR images obtained by Sentinel-2 satellite by using the VHR images from PeruSat1, a peruvian satellite, which serve as the reference for the super-resolution approach implementation based on a Generative Adversarial Network (GAN) model, as an alternative for obtaining VHR images. The VHR PeruSat-1 image dataset is used for the training process of the network. The results obtained were analyzed considering the Peak Signal to Noise Ratios (PSNR) and the Structural Similarity (SSIM). Finally, some visual outcomes, over a given testing dataset, are presented so the performance of the model could be analyzed as well.


Sign in / Sign up

Export Citation Format

Share Document