scholarly journals Worst-Case Error for Unshifted Lattice Rules Without Randomisation

Author(s):  
Yoshihito Kazashi ◽  
Ian H. Sloan
Keyword(s):  
2007 ◽  
Vol 76 (1) ◽  
pp. 93-110 ◽  
Author(s):  
Peter Kritzer ◽  
Friedrich Pillichshammer

We study a construction algorithm for certain polynomial lattice rules modulo arbitrary polynomials. The underlying polynomial lattices are special types of digital nets as introduced by Niederreiter. Dick, Kuo, Pillichshammer and Sloan recently introduced construction algorithms for polynomial lattice rules modulo irreducible polynomials which yield a small worst-case error for integration of functions in certain weighted Hilbert spaces. Here, we generalize these results to the case where the polynomial lattice rules are constructed moduloarbitrarypolynomials.


2019 ◽  
Vol 60 ◽  
pp. C247-C260
Author(s):  
Y. Kazashi ◽  
F. Y. Kuo ◽  
I. H. Sloan

We seek shifted lattice rules that are good for high dimensional integration over the unit cube in the setting of an unanchored weighted Sobolev space of functions with square-integrable mixed first derivatives. Many existing studies rely on random shifting of the lattice, whereas here we work with lattice rules with a deterministic shift. Specifically, we consider 'half-shifted' rules in which each component of the shift is an odd multiple of \(1/(2N)\) where \(N\) is the number of points in the lattice. By applying the principle that there is always at least one choice as good as the average, we show that for a given generating vector there exists a half-shifted rule whose squared worst-case error differs from the shift-averaged squared worst-case error by a term of only order \({1/N^2}\). We carry out numerical experiments where the generating vector is chosen component-by-component (CBC), as for randomly shifted lattices, and where the shift is chosen by a new `CBC for shift' algorithm. The numerical results are encouraging. References J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The quasi-Monte Carlo way. Acta Numer., 22:133–288, 2013. doi:10.1017/S0962492913000044. J. Dick, D. Nuyens, and F. Pillichshammer. Lattice rules for nonperiodic smooth integrands. Numer. Math., 126(2):259–291, 2014. doi:10.1007/s00211-013-0566-0. T. Goda, K. Suzuki, and T. Yoshiki. Lattice rules in non-periodic subspaces of sobolev spaces. Numer. Math., 141(2):399–427, 2019. doi:10.1007/s00211-018-1003-1. F. Y. Kuo. Lattice rule generating vectors. URL http://web.maths.unsw.edu.au/ fkuo/lattice/index.html. D. Nuyens and R. Cools. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput., 75:903–920, 2006. doi:10.1090/S0025-5718-06-01785-6. I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science Publications. Clarendon Press and Oxford University Press, 1994. URL https://global.oup.com/academic/product/lattice-methods-for-multiple-integration-9780198534723. I. H. Sloan and H. Wozniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complex., 14(1):1–33, 1998. doi:10.1006/jcom.1997.0463. I. H. Sloan, F. Y. Kuo, and S. Joe. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comput., 71:1609–1641, 2002. doi:10.1090/S0025-5718-02-01420-5.


Computing ◽  
2010 ◽  
Vol 87 (1-2) ◽  
pp. 63-89 ◽  
Author(s):  
Ronald Cools ◽  
Frances Y. Kuo ◽  
Dirk Nuyens

2011 ◽  
Vol 59 (3) ◽  
pp. 403-431 ◽  
Author(s):  
Jan Baldeaux ◽  
Josef Dick ◽  
Gunther Leobacher ◽  
Dirk Nuyens ◽  
Friedrich Pillichshammer

Author(s):  
J.D. Geller ◽  
C.R. Herrington

The minimum magnification for which an image can be acquired is determined by the design and implementation of the electron optical column and the scanning and display electronics. It is also a function of the working distance and, possibly, the accelerating voltage. For secondary and backscattered electron images there are usually no other limiting factors. However, for x-ray maps there are further considerations. The energy-dispersive x-ray spectrometers (EDS) have a much larger solid angle of detection that for WDS. They also do not suffer from Bragg’s Law focusing effects which limit the angular range and focusing distance from the diffracting crystal. In practical terms EDS maps can be acquired at the lowest magnification of the SEM, assuming the collimator does not cutoff the x-ray signal. For WDS the focusing properties of the crystal limits the angular range of acceptance of the incident x-radiation. The range is dependent upon the 2d spacing of the crystal, with the acceptance angle increasing with 2d spacing. The natural line width of the x-ray also plays a role. For the metal layered crystals used to diffract soft x-rays, such as Be - O, the minimum magnification is approximately 100X. In the worst case, for the LEF crystal which diffracts Ti - Zn, ˜1000X is the minimum.


2008 ◽  
Author(s):  
Sonia Savelli ◽  
Susan Joslyn ◽  
Limor Nadav-Greenberg ◽  
Queena Chen

Author(s):  
Akira YAMAWAKI ◽  
Hiroshi KAMABE ◽  
Shan LU
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document