Numerical Algorithms for the Parametric Continuation of Stiff ODEs Deriving from the Modeling of Combustion with Detailed Chemical Mechanisms

Author(s):  
Luigi Acampora ◽  
Francesco S. Marra
2003 ◽  
Vol 800 ◽  
Author(s):  
Arvind Varma ◽  
Alexander S. Mukasyan ◽  
Kishori T. Deshpande ◽  
Pavol Pranda ◽  
Peter R. Erri

ABSTRACTBased on the analysis of extensive experimental data, we have formulated basic criteria necessary for the synthesis of a variety of oxides in the combustion mode, and defined optimum conditions for the production of high-surface area, well-crystalline nano-powders of desired phase composition and purity. Also, for the first time, detailed chemical mechanisms of interaction for various systems are identified, outlining specific roles of different fuels, oxidizers and thermal conditions


Author(s):  
Kazui Fukumoto ◽  
Yoshifumi Ogami

This research aims at developing a turbulent diffusion combustion model based on the chemical equilibrium method and chemical kinetics for simplifying complex chemical mechanisms. This paper presents a combustion model based on the chemical equilibrium method and the eddy dissipation concept (CE-EDC model); the CE-EDC model is validated by simulating a H2-air turbulent diffusion flame. In this model, the reaction rate of fuels and intermediate species is estimated by using the equations of the EDC model. Further, the reacted fuels and intermediate species are assumed to be in chemical equilibrium; the amount of the other species is determined from the amount of the reacted fuels, intermediate species, and air as reactants by using the Gibbs free energy minimization method. An advantage of the CE-EDC model is that the amount of the combustion products can be determined without using detailed chemical mechanisms. The results obtained by using this model were in good agreement with the experimental and computational data obtained by using the EDC model. Using this model, the amount of combustion products can be calculated without using detailed chemical mechanisms. Further, the accuracy of this model is same as that of the EDC model.


2010 ◽  
Vol 49 (21) ◽  
pp. 10471-10478 ◽  
Author(s):  
Kaiyuan He ◽  
Ioannis P. Androulakis ◽  
Marianthi G. Ierapetritou

2018 ◽  
Author(s):  
Michael E. Jenkin ◽  
Richard Valorso ◽  
Bernard Aumont ◽  
Andrew R. Rickard ◽  
Timothy J. Wallington

Abstract. Reaction with the hydroxyl (OH) radical is the dominant removal process for volatile organic compounds (VOCs) in the atmosphere. Rate coefficients for reactions of OH with VOCs are therefore essential parameters for chemical mechanisms used in chemistry-transport models, and are required more generally for impact assessments involving estimation of atmospheric lifetimes or oxidation rates for VOCs. Updated and extended structure-activity relationship (SAR) methods are presented for the reactions of OH with aliphatic organic compounds, with the reactions of aromatic organic compounds considered in a companion paper. The methods are optimized using a preferred set of data including reactions of OH with 489 aliphatic hydrocarbons and oxygenated organic compounds. In each case, the rate coefficient is defined in terms of a summation of partial rate coefficients for H abstraction or OH addition at each relevant site in the given organic compound, so that the attack distribution is defined. The information can therefore guide the representation of the OH reactions in the next generation of explicit detailed chemical mechanisms. Rules governing the representation of the subsequent reactions of the product radicals under tropospheric conditions are also summarized, specifically their reactions with O2 and competing processes.


2018 ◽  
Author(s):  
Michael E. Jenkin ◽  
Richard Valorso ◽  
Bernard Aumont ◽  
Andrew R. Rickard ◽  
Timothy J. Wallington

Abstract. Reaction with the hydroxyl (OH) radical is the dominant removal process for volatile organic compounds (VOCs) in the atmosphere. Rate coefficients for the reactions of OH with VOCs are therefore essential parameters for chemical mechanisms used in chemistry-transport models, and are required more generally for impact assessments involving estimation of atmospheric lifetimes or oxidation rates for VOCs. A structure-activity relationship (SAR) method is presented for the reactions of OH with aromatic organic compounds, with the reactions of aliphatic organic compounds considered in the preceding companion paper. The SAR is optimized using a preferred set of data including reactions of OH with 67 monocyclic aromatic hydrocarbons and oxygenated organic compounds. In each case, the rate coefficient is defined in terms of a summation of partial rate coefficients for H abstraction or OH addition at each relevant site in the given organic compound, so that the attack distribution is defined. The SAR can therefore guide the representation of the OH reactions in the next generation of explicit detailed chemical mechanisms. Rules governing the representation of the reactions of the product radicals under tropospheric conditions are also summarized, specifically the rapid reaction sequences initiated by their reactions with O2.


2018 ◽  
Vol 18 (13) ◽  
pp. 9297-9328 ◽  
Author(s):  
Michael E. Jenkin ◽  
Richard Valorso ◽  
Bernard Aumont ◽  
Andrew R. Rickard ◽  
Timothy J. Wallington

Abstract. Reaction with the hydroxyl (OH) radical is the dominant removal process for volatile organic compounds (VOCs) in the atmosphere. Rate coefficients for reactions of OH with VOCs are therefore essential parameters for chemical mechanisms used in chemistry transport models, and are required more generally for impact assessments involving the estimation of atmospheric lifetimes or oxidation rates for VOCs. Updated and extended structure–activity relationship (SAR) methods are presented for the reactions of OH with aliphatic organic compounds, with the reactions of aromatic organic compounds considered in a companion paper. The methods are optimized using a preferred set of data including reactions of OH with 489 aliphatic hydrocarbons and oxygenated organic compounds. In each case, the rate coefficient is defined in terms of a summation of partial rate coefficients for H abstraction or OH addition at each relevant site in the given organic compound, so that the attack distribution is defined. The information can therefore guide the representation of the OH reactions in the next generation of explicit detailed chemical mechanisms. Rules governing the representation of the subsequent reactions of the product radicals under tropospheric conditions are also summarized, specifically their reactions with O2 and competing processes.


Sign in / Sign up

Export Citation Format

Share Document