Comparative Analysis of FACTS Coordinated Hybrid Power System with RFB for AGC Using GOA Based F-2DOF-PID Controller

Author(s):  
Debasis Tripathy ◽  
A. K. Barik ◽  
N. B. Dev Choudhury ◽  
B. K. Sahu
2018 ◽  
Vol 10 (4) ◽  
pp. 985-1015 ◽  
Author(s):  
Abhik Banerjee ◽  
Pabitra Kumar Guchhait ◽  
Vivekananda Mukherjee ◽  
S. P. Ghoshal

Author(s):  
Lukesh Kumar Sahu ◽  
Puranik Sahu ◽  
Ashutosh Mishra ◽  
Paparao Kambala

The huge band variation in wind speed causes unpredictable swing in power generation and hence large divergence in system frequency leading to unpredictable situation for standalone applications. To overcome the above difficulties, WTG (wind turbine generator) is integrated with conventional thermal power system along with other distributed generation units such as FC (fuel cell), DEG (diesel engine generator), AE (aqua-electrolyser) and BESS (battery energy storage system) which form a hybrid power system. This paper concerns with automatic generation control (AGC) of an interconnected two area hybrid power system as mentioned above. Design and implementation of suitable controllers for AGC of above hybrid power system is a challenging job for operational and design engineers. Various control schemes proposed in this paper are conventional PID & PID controller with derivative filter (PIDF) and fuzzy-PID controller without (fuzzy-PID) and with derivative filter (fuzzy-PIDF) to achieve improved performance of AGC system in terms of frequency profile. The values of gain parameters of proposed controllers are designed using hybrid LUS-TLBO (Local Unimodal Sampling-Teaching Learning Based Optimization) algorithm. Superiority of fuzzy-PIDF controller over other proposed controllers are addressed. Robustness study of proposed fuzzy-PIDF controller is thoroughly demonstrated with change in system parameters and loading pattern. The work is further extended to analyze the transient phenomena of the AGC for a 3-area interconnected system having nonlinearities such as reheat turbine, governor dead band along with generation rate constraint for the thermal generating units.


Sign in / Sign up

Export Citation Format

Share Document