Optimization Design of a 2-DOF Compliant Parallel Mechanism Using NSGA-II Algorithm for Vibration-Assisted Milling

Author(s):  
Huy-Tuan Pham ◽  
Van-Khien Nguyen ◽  
Khac-Huy Nguyen ◽  
Quang-Khoa Dang ◽  
Trung-Kien Hoang ◽  
...  
Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


Author(s):  
Antonio Ruiz ◽  
Francisco Campa Gomez ◽  
Constantino Roldan-Paraponiaris ◽  
Oscar Altuzarra

The present work deals with the development of a hybrid manipulator of 5 degrees of freedom for milling moulds for microlenses. The manipulator is based on a XY stage under a 3PRS compliant parallel mechanism. The mechanism takes advantage of the compliant joints to achieve higher repetitiveness, smoother motion and a higher bandwidth, due to the high precision demanded from the process, under 0.1 micrometers. This work is focused on the kinematics of the compliant stage of the hybrid manipulator. First, an analysis of the workspace required for the milling of a single mould has been performed, calculating the displacements required in X, Y, Z axis as well as two relative rotations between the tool and the workpiece from a programmed toolpath. Then, the 3PRS compliant parallel mechanism has been designed using FEM with the objective of being stiff enough to support the cutting forces from the micromilling, but flexible enough in the revolution and spherical compliant joints to provide the displacements needed. Finally, a prototype of the 3PRS compliant mechanism has been built, implementing a motion controller to perform translations in Z direction and two rotations. The resulting displacements in the end effector and the actuated joints have been measured and compared with the FEM calculations and with the rigid body kinematics of the 3PRS.


2015 ◽  
pp. 787-817
Author(s):  
Saeid Pourzeynali ◽  
Shide Salimi

The main objective of this chapter is to find the optimal values of the parameters of the base isolation systems and that of the semi-active viscous dampers using genetic algorithms (GAs) and fuzzy logic in order to simultaneously minimize the buildings' selected responses such as displacement of the top story, base shear, and so on. In this study, performance of base isolation systems, and semi-active viscous dampers are studied separately as different vibration control strategies. In order to simultaneously minimize the objective functions, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solution. To study the performance of semi-active viscous dampers, the torsional effects exist in the building due to irregularities, and unsymmetrical placement of the dampers is taken into account through 3D modeling of the building.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 83213-83223 ◽  
Author(s):  
Lu Zhang ◽  
Hongjuan Ge ◽  
Ying Ma ◽  
Jianliang Xue ◽  
Huang Li ◽  
...  

Procedia CIRP ◽  
2013 ◽  
Vol 5 ◽  
pp. 175-178 ◽  
Author(s):  
Hiroaki Kozuka ◽  
Jumpei Arata ◽  
Kenji Okuda ◽  
Akinori Onaga ◽  
Motoshi Ohno ◽  
...  

2012 ◽  
Vol 13 (9) ◽  
pp. 1625-1632 ◽  
Author(s):  
Kee-Bong Choi ◽  
Jae Jong Lee ◽  
Gee Hong Kim ◽  
Hyung Jun Lim

2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Cyril Quennouelle ◽  
Clément Gosselin

In this paper, the mobility, the kinematic constraints, the pose of the end-effector, and the static constraints that lead to the kinematostatic model of a compliant parallel mechanism are introduced. A formulation is then provided for its instantaneous variation—the quasi-static model. This new model allows the calculation of the variation in the pose as a linear function of the motion of the actuators and the variation in the external loads through two new matrices: the compliant Jacobian matrix and the Cartesian compliance matrix that give a simple and meaningful formulation of the model of the mechanism. Finally, a simple application to a planar four-bar mechanism is presented to illustrate the use of this model and the new possibilities that it opens, notably the study of the kinematics for any range of applied load.


2015 ◽  
Vol 741 ◽  
pp. 393-396 ◽  
Author(s):  
Lei Liu ◽  
Yi Qi Zhou ◽  
Yong Zhen Mi ◽  
Dan Lu

The surrogate model has been extensively applied in engineering optimization design recently. Based on surrogate model, the complicated functional relationships between variables and responses can be precisely described. In this paper, the Kriging surrogate model are adopted to simulate the relationships between the sound pressure level (SPL) peaks at the drivers right ear (DRE) and the performance parameters of excavator cab shock absorbers with the FEM model, followed by the optimization design been accomplished with algorithm NSGA-II. The results indicate that the SPL peaks and the overall SPL can both be decreased through optimizing the performance parameters with Kriging surrogate model.


Sign in / Sign up

Export Citation Format

Share Document