Experimental Validation of the Kinematics of a 3PRS Compliant Mechanism for Micromilling

Author(s):  
Antonio Ruiz ◽  
Francisco Campa Gomez ◽  
Constantino Roldan-Paraponiaris ◽  
Oscar Altuzarra

The present work deals with the development of a hybrid manipulator of 5 degrees of freedom for milling moulds for microlenses. The manipulator is based on a XY stage under a 3PRS compliant parallel mechanism. The mechanism takes advantage of the compliant joints to achieve higher repetitiveness, smoother motion and a higher bandwidth, due to the high precision demanded from the process, under 0.1 micrometers. This work is focused on the kinematics of the compliant stage of the hybrid manipulator. First, an analysis of the workspace required for the milling of a single mould has been performed, calculating the displacements required in X, Y, Z axis as well as two relative rotations between the tool and the workpiece from a programmed toolpath. Then, the 3PRS compliant parallel mechanism has been designed using FEM with the objective of being stiff enough to support the cutting forces from the micromilling, but flexible enough in the revolution and spherical compliant joints to provide the displacements needed. Finally, a prototype of the 3PRS compliant mechanism has been built, implementing a motion controller to perform translations in Z direction and two rotations. The resulting displacements in the end effector and the actuated joints have been measured and compared with the FEM calculations and with the rigid body kinematics of the 3PRS.

Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Minh Tuan Pham ◽  
Song Huat Yeo ◽  
Tat Joo Teo ◽  
Pan Wang ◽  
Mui Ling Sharon Nai

This paper presents a novel six degrees-of-freedom (DOF) compliant parallel mechanism (CPM) with decoupled output motions, large workspace of ≥6 mm for translations and ≥12° for rotations, optimized stiffness, and dynamic properties. The working range and the motion decoupling capability of the six-DOF CPM are experimentally verified, and the mechanical properties are shown to be predictable. The proposed CPM is synthesized by applying the beam-based structural optimization method together with the criteria for achieving motion decoupling capability. In order to improve the dynamic behaviors for the CPM, cellular structure is used to design its end effector. The obtained results show that the dynamic performance of the CPM with cellular end effector is significantly enhanced with the increase of 33% of the first resonance frequency as compared to the initial design. Performances of the three-dimensional (3D)-printed prototype are experimentally evaluated in terms of mechanical characteristics and decoupled motions. The obtained results show that the actual stiffness and dynamic properties agree with the predictions with the highest deviation of ~10.5%. The motion decoupling capability of the CPM is also demonstrated since almost input energy (>99.5%) generates the desired output motions while the energy causes parasitic motions is only minor (<0.5%).


Procedia CIRP ◽  
2013 ◽  
Vol 5 ◽  
pp. 175-178 ◽  
Author(s):  
Hiroaki Kozuka ◽  
Jumpei Arata ◽  
Kenji Okuda ◽  
Akinori Onaga ◽  
Motoshi Ohno ◽  
...  

Author(s):  
V. C. Ravi ◽  
Subrata Rakshit ◽  
Ashitava Ghosal

Hyper-redundant robots are characterized by the presence of a large number of actuated joints, many more than the number required to perform a given task. These robots have been proposed and used for many application involving avoiding obstacles or, in general, to provide enhanced dexterity in performing tasks. Making effective use of the extra degrees of freedom or resolution of redundancy have been an extensive topic of research and several methods have been proposed in literature. In this paper, we compare three known methods and show that an algorithm based on a classical curve called the tractrix leads to a more ‘natural’ motion of the hyper-redundant robot with the displacements diminishing from the end-effector to the fixed base. In addition, since the actuators at the base ‘see’ the inertia of all links, smaller motion of the actuators nearer to the base results in a smoother motion of the end-effector as compared to other two approaches. We present simulation and experimental results performed on a prototype eight link planar hyper-redundant manipulator.


2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Cyril Quennouelle ◽  
Clément Gosselin

In this paper, the mobility, the kinematic constraints, the pose of the end-effector, and the static constraints that lead to the kinematostatic model of a compliant parallel mechanism are introduced. A formulation is then provided for its instantaneous variation—the quasi-static model. This new model allows the calculation of the variation in the pose as a linear function of the motion of the actuators and the variation in the external loads through two new matrices: the compliant Jacobian matrix and the Cartesian compliance matrix that give a simple and meaningful formulation of the model of the mechanism. Finally, a simple application to a planar four-bar mechanism is presented to illustrate the use of this model and the new possibilities that it opens, notably the study of the kinematics for any range of applied load.


2021 ◽  
Vol 12 (2) ◽  
pp. 983-995
Author(s):  
Shihua Li ◽  
Yajie Zhou ◽  
Yanxia Shan ◽  
Shuang Chen ◽  
Jinhan Han

Abstract. In the fields of electronic packaging, micromanipulation, scanning, and two translational (2T) mechanisms are required, especially with high stiffness, for a large workspace, with good driving stability, and other occasions. Redundant actuators are required to improve the performance of the 2T compliant parallel mechanism. The novelty of the work is to propose a new method for the type synthesis of a 2T redundant actuated compliant parallel mechanism based on the freedom and constraint topology (FACT) approach and the atlas approach. The synthesis conditions are given, and the synthesis process is formulated. With this method, new 2T redundant actuated compliant parallel mechanisms are synthesized. Some new mechanisms have been synthesized, which enriches the compliant parallel mechanism configurations. Based on the atlas method, the synthesized mechanism is analyzed. The results verify the correctness and effective of the synthesis method. The method is also suitable for a type of synthesis of redundant actuated compliant parallel mechanisms with 3, 4, 5, and 6 degrees of freedom (DOF), respectively.


2020 ◽  
pp. 1-24
Author(s):  
Kaiyu Wu ◽  
Fan Zhang ◽  
Guohua Cui ◽  
Jing Sun ◽  
Minhua Zheng

Abstract A decoupled mechanism based on intersecting planes that can be considered a parallel mechanism with two arms is presented in this paper. The end-effector is connected to the base through two planar serial arms. The new specific characteristics of novel mechanism allow the generation of a Remote Center of Motion (RCM) possessing two decoupled rotational degrees of freedom (DoF) and a tanslational DoF. Compared with the RCM mechanism based on intersecting planes proposed by Li et al, due to the decoupling characteristics of this mechanism make it has a simpler control scheme and a larger workspace. This mechanisms also eliminates the singularity inside its workspace that impairs the original mechanism. In the final part of the paper, through an analysis of the force transmission performance, we derive a method to adjust the length of the linkage to optimize its force transmission performance.


Author(s):  
Haiyang Li ◽  
Guangbo Hao

This paper introduces a compliant mechanism reconfiguration approach that can be used to minimize the parasitic motions of a compliant mechanism. This reconfiguration approach is based on the position spaces, identified by the screw theory, of independent compliant modules in a compliant mechanism system. The parasitic motions (rotations) of a compliant mechanism are first modelled associated with the variables representing any positions of the compliant modules in the position spaces. The optimal positions of the compliant modules are then obtained where the parasitic motions are reduced to minimal values. A procedure of the compliant mechanism reconfiguration approach is summarized and demonstrated using a decoupled XYZ compliant parallel mechanism as an example. The analytical results show that the parasitic motions of the XYZ compliant parallel mechanism in the example can be dramatically reduced by the position/structure reconfiguration, which is also validated by finite element analysis. The position space of a compliant module contains a number of possible positions, thus a compliant mechanism can also be efficiently reconfigured to a variety of practical patterns such as the configuration with compact structure.


Author(s):  
Qiang Zeng ◽  
Kornel F. Ehmann

Prevalent general design methods and applications of compliant displacement amplifiers are focused on 1-DOF units composed into serial structures, which are limited by their output motions, stiffness, heat balance, repeatability and resonant frequencies. To improve the output properties of compliant displacement amplifiers, a monolithic structure is presented in the form of a compliant parallel mechanism. In the proposed moving structure, the compliant mechanism of the displacement amplifier is designed with 3-DOF to generate uniformly magnified output properties in all directions. High first resonant frequencies and amplification ratios are achieved in a compact size compared to existing compliant displacement amplifiers. The related kinematics, amplification ratios and resonant frequencies of the amplifier are analytically modeled, and the results are simulated by finite-element analysis. The proposed design is employable for micro/nano positioning stages operating within a prismatic output workspace.


Author(s):  
Shiwei Liu ◽  
Yu Sun ◽  
Gaoliang Peng ◽  
Yuan Xue ◽  
Anna Hnydiuk-Stefan ◽  
...  

In this paper, a novel 6-degrees-of-freedom (DOF) hybrid mechanism is proposed to realize position and posture adjusting for large-volume equipment. The designed hybrid manipulator is composed of the lower and upper modules, namely, a 3-DOF redundant spatial parallel mechanism (SPM) and a 3-DOF planar parallel mechanism (PPM), which has three rotational and three translational DOFs. According to the step-by-step pose adjusting strategy, the kinematics analyses of the lower and upper modules have been carried out systematically. For the whole hybrid mechanism, a complete kinematic model has been established; and visualized workspace of the kinematic model with regular shape and large volume demonstrates profound application prospects in engineering. In order to evaluate the performance of the proposed mechanism, experimental tests have been conducted in an automated docking system for pose adjustment of large and heavy components. The analysis results demonstrate the effectiveness and practicability of the new mechanism.


Sign in / Sign up

Export Citation Format

Share Document