Event Triggered Suboptimal CKF Upon Channel Packet Dropout

Author(s):  
Zhen Li ◽  
Sen Li ◽  
Tyrone Fernando ◽  
Xi Chen
2017 ◽  
Vol 27 (18) ◽  
pp. 4208-4226 ◽  
Author(s):  
Li Li ◽  
Dongdong Yu ◽  
Yuanqing Xia ◽  
Hongjiu Yang

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Jidong Wang ◽  
Kezhen Han

The event-triggered energy-to-peak filtering for polytopic discrete-time linear systems is studied with the consideration of lossy network and quantization error. Because of the communication imperfections from the packet dropout of lossy link, the event-triggered condition used to determine the data release instant at the event generator (EG) can not be directly applied to update the filter input at the zero order holder (ZOH) when performing filter performance analysis and synthesis. In order to balance such nonuniform time series between the triggered instant of EG and the updated instant of ZOH, two event-triggered conditions are defined, respectively, whereafter a worst-case bound on the number of consecutive packet losses of the transmitted data from EG is given, which marginally guarantees the effectiveness of the filter that will be designed based on the event-triggered updating condition of ZOH. Then, the filter performance analysis conditions are obtained under the assumption that the maximum number of packet losses is allowable for the worst-case bound. In what follows, a two-stage LMI-based alternative optimization approach is proposed to separately design the filter, which reduces the conservatism of the traditional linearization method of filter analysis conditions. Subsequently a codesign algorithm is developed to determine the communication and filter parameters simultaneously. Finally, an illustrative example is provided to verify the validity of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document