scholarly journals The Metaphysics of Machian Frame-Dragging

Author(s):  
Antonio Vassallo ◽  
Carl Hoefer
Keyword(s):  
Author(s):  
Andreas Schärer ◽  
Ruxandra Bondarescu ◽  
Prasenjit Saha ◽  
Raymond Angélil ◽  
Ravit Helled ◽  
...  
Keyword(s):  

2007 ◽  
Vol 40 (7) ◽  
pp. 1367-1378 ◽  
Author(s):  
Kenneth J. Epstein

2013 ◽  
Vol 45 (12) ◽  
pp. 2457-2465 ◽  
Author(s):  
J. Strohaber

2014 ◽  
Vol 23 (06) ◽  
pp. 1450053 ◽  
Author(s):  
Joan Jing Wang ◽  
Hsiang-Kuang Chang

In accreting neutron star (NS) low-mass X-ray binary (LMXB) systems, NS accretes material from its low-mass companion via a Keplerian disk. In a viscous accretion disk, inflows orbit the NS and spiral in due to dissipative processes, such as the viscous process and collisions of elements. The dynamics of accretion flows in the inner region of an accretion disk is significantly affected by the rotation of NS. The rotation makes NS, thus the spacetime metric, deviate from the originally spherical symmetry, and leads to gravitational quadrupole, on one hand. On the other hand, a rotating NS drags the local inertial frame in its vicinity, which is known as the rotational frame-dragging effect. In this paper, we investigate the orbital motion of accretion flows of accreting NS/LMXBs and demonstrate that the rotational effects of NS result in a band of quasi-quantized structure in the inner region of the accretion disk, which is different, in nature, from the scenario in the strong gravity of black hole arising from the resonance for frequencies related to epicyclic and orbital motions. We also demonstrate that such a disk structure may account for frequencies seen in X-ray variability, such as quasi-periodic oscillations (QPOs), and can be a potential promising tool for the investigation of photon polarization.


2006 ◽  
Vol 15 (1) ◽  
pp. 232-234 ◽  
Author(s):  
He Tang-Mei ◽  
Wang Yong-Jiu
Keyword(s):  

Science ◽  
2020 ◽  
Vol 367 (6477) ◽  
pp. 522.2-522
Author(s):  
Keith T. Smith
Keyword(s):  

Author(s):  
Katherine Blundell

‘Characterizing black holes’ describes the two different types of black holes: Schwarzschild black holes that do not rotate and Kerr black holes that do. The only distinguishing characteristics of black holes are their mass and their spin. A remarkable feature of a spinning black hole is that the gravitational field pulls objects around the black hole’s axis of rotation, not merely in towards its centre—an effect called frame dragging. The static limit and ergosphere regions of black holes are also described. Einstein’s equations of General Relativity allow many different solutions describing alternative versions of curved spacetime. Could white holes and worm holes exist in our universe?


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Ignazio Ciufolini ◽  
Antonio Paolozzi ◽  
Erricos C. Pavlis ◽  
Giampiero Sindoni ◽  
John Ries ◽  
...  

Abstract We report the improved test of frame-dragging, an intriguing phenomenon predicted by Einstein’s General Relativity, obtained using 7 years of Satellite Laser Ranging (SLR) data of the satellite LARES (ASI, 2012) and 26 years of SLR data of LAGEOS (NASA, 1976) and LAGEOS 2 (ASI and NASA, 1992). We used the static part and temporal variations of the Earth gravity field obtained by the space geodesy mission GRACE (NASA and DLR) and in particular the static Earth’s gravity field model GGM05S augmented by a model for the 7-day temporal variations of the lowest degree Earth spherical harmonics. We used the orbital estimator GEODYN (NASA). We measured frame-dragging to be equal to $$0.9910 \pm 0.02$$0.9910±0.02, where 1 is the theoretical prediction of General Relativity normalized to its frame-dragging value and $$\pm 0.02$$±0.02 is the estimated systematic error due to modelling errors in the orbital perturbations, mainly due to the errors in the Earth’s gravity field determination. Therefore, our measurement confirms the prediction of General Relativity for frame-dragging with a few percent uncertainty.


Sign in / Sign up

Export Citation Format

Share Document