inner region
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 93)

H-INDEX

37
(FIVE YEARS 7)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
José Luis Díaz ◽  
Saeed Rahman ◽  
Juan Miguel García-Haro

In the presented analysis, a heterogeneous diffusion is introduced to a magnetohydrodynamics (MHD) Darcy–Forchheimer flow, leading to an extended Darcy–Forchheimer model. The introduction of a generalized diffusion was proposed by Cohen and Murray to study the energy gradients in spatial structures. In addition, Peletier and Troy, on one side, and Rottschäfer and Doelman, on the other side, have introduced a general diffusion (of a fourth-order spatial derivative) to study the oscillatory patterns close the critical points induced by the reaction term. In the presented study, analytical conceptions to a proposed problem with heterogeneous diffusions are introduced. First, the existence and uniqueness of solutions are provided. Afterwards, a stability study is presented aiming to characterize the asymptotic convergent condition for oscillatory patterns. Dedicated solution profiles are explored, making use of a Hamilton–Jacobi type of equation. The existence of oscillatory patterns may induce solutions to be negative, close to the null equilibrium; hence, a precise inner region of positive solutions is obtained.


2D Materials ◽  
2021 ◽  
Author(s):  
Puspendu Guha ◽  
Joon Young Park ◽  
Janghyun Jo ◽  
Yunyeong Chang ◽  
Hyeonhu Bae ◽  
...  

Abstract We report on heteroepitaxial growth of Sb2Te3-Bi2Te3 lateral heterostructures using molecular beam epitaxy. The lateral heterostructures were fabricated by growing Bi2Te3 islands of hexagonal or triangular nanostructures with a typical size of several hundred nm and thickness of ~ 15 nm on graphene substrates and Sb2Te3 laterally on the side facets of the nanostructures. Multiple-step processes with different growth temperatures were employed to grow the lateral heterostructures. Electron microscopy techniques indicate that the inner region is Bi2Te3 and the outer Sb2Te3 was formed laterally on the graphene in an epitaxial manner. The interface between Bi2Te3 and Sb2Te3 from planar and cross-sectional views was studied by the aberration-corrected (Cs-corrected) high-angle annular dark-field scanning TEM (HAADF-STEM) technique. The cross-sectional electron microscopy investigation shows no wetting layer of Sb2Te3 on Bi2Te3, corroborating perfect lateral heterostructure formation. In addition, we investigated the topological properties of Sb2Te3-Bi2Te3 lateral heterostructures using first-principles calculations.


Author(s):  
G Madeira ◽  
S M Giuliatti Winter ◽  
T Ribeiro ◽  
O C Winter

Abstract The space missions designed to visit small bodies of the Solar System boosted the study of the dynamics around non-spherical bodies. In this vein, we study the dynamics around a class of objects classified by us as Non-Spherical Symmetric Bodies, including contact binaries, triaxial ellipsoids, spherical bodies with a mass anomaly, among others. In the current work, we address the results for a body with a mass anomaly. We apply the pendulum model to obtain the width of the spin-orbit resonances raised by non-asymmetric gravitational terms of the central object. The Poincaré surface of section technique is adopted to confront our analytical results and to study the system’s dynamics by varying the parameters of the central object. We verify the existence of two distinct regions around an object with a mass anomaly: a chaotic inner region that extends beyond the corotation radius and a stable outer region. In the latter, we identify structures remarkably similar to those of the classical restrict and planar 3-body problem in the Poincaré surface of sections, including asymmetric periodic orbits associated with 1:1+p resonances. We apply our results to a Chariklo with a mass anomaly, obtaining that Chariklo rings are probably related to first kind periodic orbits and not with 1:3 spin-orbit resonance, as proposed in the literature. We believe that our work presents the first tools for studying mass anomaly systems.


Author(s):  
Taisheng Yan ◽  
Jianrong Shi ◽  
Hao Tian ◽  
Wei Zhang ◽  
Bo Zhang

Abstract Based on the data release of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey (LAMOST DR5) and the Gaia Early Data Release 3 (Gaia EDR3), we construct a sample containing 46,109 giant (log g 3.5 dex) stars with heliocentric distance d 4 kpc, and the sample is further divided into two groups of the inner (RGC < 8.34 kpc) and outer region (RGC > 8.34 kpc). The LZ distributions of our program stars in the panels with different [Fe/H] and [α/Fe] suggest that the thick-disk consists of two distinct components with different chemical compositions and kinematic properties. For the inner region, the metal-weak thick disk (MWTD) contributes significantly when [α/Fe] > +0.2 dex and [Fe/H] < −0.8 dex, while the canonical thick-disk (TD) dominates when [Fe/H]> −0.8 dex. However, MWTD clear appears only when [α/Fe] > +0.2 dex and [Fe/H] < −1.2 dex for the outer region, and its proportion is lower than that of the inner region within the same metallicity. Similar result can be obtained from the Vφ distribution.


Author(s):  
Bohua Sun

For a given material, different shapes correspond to different rigidities. In this paper, the radii of the oblique elliptic torus are formulated, a nonlinear displacement formulation is presented and numerical simulations are carried out for circular, normal elliptic, and oblique tori, respectively. Our investigation shows that both the deformation and the stress response of an elastic torus are sensitive to the radius ratio, and indicate that the analysis of a torus should be done by using the bending theory of shells rather than membrance theory. A numerical study demonstrates that the inner region of the torus is stiffer than the outer region due to the Gauss curvature. The study also shows that an elastic torus deforms in a very specific manner, as the strain and stress concentration in two very narrow regions around the top and bottom crowns. The desired rigidity can be achieved by adjusting the ratio of minor and major radii and the oblique angle.


Author(s):  
Jinxuan Tang ◽  
Hui Zhou ◽  
Chuntao Jiang ◽  
Muming Xia ◽  
Hanming Chen ◽  
...  

ABSTRACT As a complementary way to traditional wave-equation-based forward modeling methods, lattice spring model (LSM) is introduced into seismology for wavefield modeling owing to its remarkable stability, high-calculation accuracy, and flexibility in choosing simulation meshes, and so forth. The LSM simulates seismic-wave propagation from a micromechanics perspective, thus enjoying comprehensive characterization of elastic dynamics in complex media. Incorporating an absorbing boundary condition (ABC) is necessary for wavefield modeling to avoid the artificial reflections caused by truncated boundaries. To the best of our knowledge, the perfectly matched layer (PML) method has been a routine ABC in the wave-equation-based numerical modeling of wave physics. However, it has not been used in the nonwave-equation-based LSM simulations. In this work, we want to apply PML to LSM to attenuate the boundary reflections. We divide the whole simulation region into PML region and inner region, PML region surrounds the inner region. To incorporate PML to LSM, we establish elastic-wave equations corresponding to LSM. The simulation in the PML region is conducted using the established wave equations and the simulation in the inner region is conducted using LSM. Three simulation examples show that the PML scheme is effective and outperforms Gaussian ABC.


Author(s):  
Junwei Yang ◽  
Hua Zhao ◽  
Lei Ke ◽  
Xing Liu ◽  
Shengbin Cao

Despite the extensive use of graphene-based materials in K-ion batteries, the effects of various edge morphologies of graphene on K atom adsorption and diffusion are unclear. In this study, the effects of K atom adsorption and diffusion on zigzag graphene nanoribbons (ZGNRs) with hydrogen (−H), ketone (=O), hydroxyl (−OH), and carboxyl (−COOH) terminal groups were investigated by density functional theory calculations. ZGNRs terminating with −H, =O and −COOH promote K atom adsorption, whereas those terminating with −OH suppress it. The −H, =O, −OH and −COOH terminations have a negligible effect on K atom diffusion in the inner region of ZGNRs. In the edge region, the diffusion barriers are nearly unchanged for −H and −OH terminations; however, they are increased for =O and −COOH terminations in the edge region compared to those in the inner region. All the terminal groups hinder K atom diffusion from the edge region toward the inner region. Our results suggest that −H termination enhances K atom adsorption and has a negligible effect on the diffusion barrier of K atom in the edge region. Therefore, the ZGNR with −H termination could be a promising candidate for K-ion batteries.


Nature ◽  
2021 ◽  
Vol 598 (7881) ◽  
pp. 425-428
Author(s):  
Tajana Schneiderman ◽  
Luca Matrà ◽  
Alan P. Jackson ◽  
Grant M. Kennedy ◽  
Quentin Kral ◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
Beatriz Corbacho González ◽  
Roc Padró Caminal

Abstract This article describes the intensification process of agriculture and its environmental limits regarding soil fertility in the rural community of Fonsagrada, in the inner region of Galicia in northwestern Spain. It addresses changes in land use, crops, and agricultural productivity between 1750 and 1890, framed within the theory of social metabolism and based on the method of nutrient balances. That technique measures nitrogen, phosphorus, and potassium flows across the landscape within a given agro-ecosystem to assess its biophysical functioning and to detect environmental constraints related to management. The intensification of cropland resulted in net losses of potassium in outlying rough grazing land and hay meadows that served as the sources of cropland nutrients. Agricultural intensification was possible due to the close stabling of livestock, which allowed for more manure availability. Doing so, however, deprived pastureland of nutrient recover through manure deposition, which created a metabolic rift in the agro-ecosystem.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1568 ◽  
Author(s):  
Luis Herrera ◽  
Alicia Di Prisco ◽  
Justo Ospino

We study the general properties of dissipative fluid distributions endowed with hyperbolical symmetry. Their physical properties are analyzed in detail. It is shown that the energy density is necessarily negative, and the central region cannot be attained by any fluid element. We describe this inner region by a vacuum cavity around the center. By assuming a causal transport equation some interesting thermodynamical properties of these fluids are found. Several exact analytical solutions, which evolve in the quasi–homologous regime and satisfy the vanishing complexity factor condition, are exhibited.


Sign in / Sign up

Export Citation Format

Share Document