Uncertainty Quantification of Chemical Kinetic Reaction Rate Coefficients

Author(s):  
É. Valkó ◽  
T. Turányi
ACS Omega ◽  
2019 ◽  
Vol 4 (22) ◽  
pp. 19880-19894
Author(s):  
Jun Zhang ◽  
Yuanyuan Tan ◽  
Shujiang Li ◽  
Yanhong Wang ◽  
Runda Jia

2009 ◽  
Vol 9 (12) ◽  
pp. 1697-1704 ◽  
Author(s):  
Charles J. Choi ◽  
Ian D. Block ◽  
Brian Bole ◽  
David Dralle ◽  
Brian T. Cunningham

Author(s):  
L. Elliott ◽  
D. B. Ingham ◽  
A. G. Kyne ◽  
N. S. Mera ◽  
M. Pourkashanian ◽  
...  

It is well recognised that many important combustion phenomena are kinetically controlled. Whether it be the burning velocity of a premixed flame, the formation of pollutants in an exhaust stack or the conversion of NO to NO2 in a gas turbine combustor, it is important that a detailed chemical kinetic approach be undertaken in order to fully understand the chemical processes taking place. This study uses a genetic algorithm to determine new reaction rate parameters (A’s, β’s and Ea’s in the Arrhenius expressions) for the combustion of both a hydrogen/air and methane/air mixture in a perfectly stirred reactor. In both cases, output species profiles obtained from an original set of rate constants are reproduced by a new different set obtained using a genetic algorithm inversion process. The new set of rate constants lie between predefined boundaries (±25% of the original values) which in future work can be extended to represent the uncertainty associated with experimental findings. In addition, this powerful technique may be used in developing reaction mechanisms whose newly optimised rate constants reproduce all the experimental data available, enabling a greater confidence in their predictive capabilities. The results of this study therefore demonstrate that the genetic algorithm inversion process promises the ability to assess combustion behaviour for fuels where the reaction rate coefficients are not known with any confidence and, subsequently, accurately predict emission characteristics, stable species concentrations and flame characterisation. Such predictive capabilities will be of paramount importance within the gas turbine industry.


Author(s):  
Sajjad Yousefian ◽  
Gilles Bourque ◽  
Rory F. D. Monaghan

There is a need for fast and reliable emissions prediction tools in the design, development and performance analysis of gas turbine combustion systems to predict emissions such as NOx, CO. Hybrid emissions prediction tools are defined as modelling approaches that (1) use computational fluid dynamics (CFD) or component modelling methods to generate flow field information, and (2) integrate them with detailed chemical kinetic modelling of emissions using chemical reactor network (CRN) techniques. This paper presents a review and comparison of hybrid emissions prediction tools and uncertainty quantification (UQ) methods for gas turbine combustion systems. In the first part of this study, CRN solvers are compared on the bases of some selected attributes which facilitate flexibility of network modelling, implementation of large chemical kinetic mechanisms and automatic construction of CRN. The second part of this study deals with UQ, which is becoming an important aspect of the development and use of computational tools in gas turbine combustion chamber design and analysis. Therefore, the use of UQ technique as part of the generalized modelling approach is important to develop a UQ-enabled hybrid emissions prediction tool. UQ techniques are compared on the bases of the number of evaluations and corresponding computational cost to achieve desired accuracy levels and their ability to treat deterministic models for emissions prediction as black boxes that do not require modifications. Recommendations for the development of UQ-enabled emissions prediction tools are made.


Sign in / Sign up

Export Citation Format

Share Document