global warming potentials
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 21)

H-INDEX

33
(FIVE YEARS 2)

Author(s):  
Mr Manjunath H R ◽  
Jeevitha Naveen Suvarna ◽  
Gowthami ◽  
Shrihastha ◽  
Gagan Raghavendra J

Technology is advancing at an unbelievable rate. To the point many of us are not able to efficiently keep up. With the ever-increasing sophistication of Artificial Intelligence [AI]. The environmental impact of wind power is relatively minor when compared to that of fossil fuel power. Compared with other low carbon sources, wind turbines have one of the lowest global warming potentials per unit of electricity energy generated per power sources. Among the renewable energy arts wind energy plays a significant role and, as forecasted its ratio within the total energy production will rapidly increase. Wind turbines are relatively complex electro-mechanical systems, their smooth functioning is an important economical factor. This is why monitoring and diagnosis of wind turbines and wind farms gained extreme importance in the past years.


2021 ◽  
Vol 169 (1-2) ◽  
Author(s):  
Tom M. L. Wigley

AbstractThis paper provides an assessment of Article 4.1 of the Paris Agreement on climate; the main goal of which is to provide guidance on how “to achieve the long-term temperature goal set out in Article 2”. Paraphrasing, Article 4.1 says that, to achieve this end, we should decrease greenhouse gas (GHG) emissions so that net anthropogenic GHG emissions fall to zero in the second half of this century. To aggregate net GHG emissions, 100-year global warming potentials (GWP-100) are commonly used to convert non-CO2 emissions to equivalent CO2 emissions. The GWP-scaling method is tested using methane as an example. The temperature projections using GWP-100 scaling are shown to be seriously in error. This throws doubt on the use of GWP-100 scaling to estimate net GHG emissions. An alternative method to determine the net-zero point for GHG emissions based on radiative forcing is derived, where the net-zero point is identified with the maximum of GHG forcing. This shows that, to meet the Article 2 warming goal, the net-zero point for GHG emissions needs to be reached as early as 2036, much sooner than in the Article 4.1 window. Other scientific problems in Article 4.1 that further undermine its purpose to guide efforts to achieve the Article 2 temperature targets are discussed.


2021 ◽  
Author(s):  
Tom M. L. Wigley

Abstract This paper provides an assessment of Article 4.1 of the Paris Agreement on climate; the main goal of which is to provide guidance on how “to achieve the long-term temperature goal set out in Article 2”. Paraphrasing, Article 4.1 says that, to achieve this end, we should decrease greenhouse gas (GHG) emissions so that net anthropogenic GHG emissions fall to zero in the second half of this century. To aggregate net GHG emissions, 100-year Global Warming Potentials (GWP-100) are commonly used to convert non-CO2 emissions to equivalent CO2 emissions. As a test case using methane, temperature projections using GWP-100 scaling are shown to be seriously in error. This throws doubt on the use of GWP-100 scaling to estimate net GHG emissions. An alternative method to determine the net-zero point for GHG emissions based on radiative forcing is derived. This shows that the net-zero point needs to be reached as early as 2036, much sooner than in the Article 4.1 window. Other scientific flaws in Article 4.1 that further undermine its purpose to guide efforts to achieve the Article 2 temperature targets are discussed.


2021 ◽  
Author(s):  
Alexander Nauels ◽  
Carl-Friedrich Schleussner ◽  
Joeri Rogelj

<p>The treatment of non-CO<sub>2</sub> greenhouse gases is central for scientific assessments of effective climate change mitigation and climate policy. Radiative forcing of a unit of emitted short-lived gases decays quickly; on the order of a decade for methane, as opposed to centuries for CO<sub>2</sub>. Metric selection for comparing the climate effect of these emissions with CO<sub>2</sub> thereby comes with choices regarding short- vs. long-term priorities to achieve mitigation. The global nature of the well-mixed atmosphere also has implications for the transferability of concepts such as global warming potentials from the global to the national scale.</p><p>Here we present the implications of metric choice on global emissions balance and net zero, with a particular emphasis on the consistency with the wider context of the Paris Agreement, both on the global as well as the national level. Stylized scenarios show that interpreting the Paris Agreement emissions goals with metrics different from the IPCC AR5 can lead to inconsistencies with the Agreement’s temperature goal. Furthermore, we illustrate that introducing metrics that depend on historical emissions in a national context raises profound questions of equity and fairness, thereby questioning the applicability of non-constant global warming potentials at any but the global level. We provide suggestions to adequately approach these issues in the context of the Paris Agreement and national policy making.</p>


2021 ◽  
Vol 18 (3) ◽  
pp. 1029-1048
Author(s):  
Carlos A. Sierra ◽  
Susan E. Crow ◽  
Martin Heimann ◽  
Holger Metzler ◽  
Ernst-Detlef Schulze

Abstract. Ecosystems play a fundamental role in climate change mitigation by photosynthetically fixing carbon from the atmosphere and storing it for a period of time in organic matter. Although climate impacts of carbon emissions by sources can be quantified by global warming potentials, the appropriate formal metrics to assess climate benefits of carbon removals by sinks are unclear. We introduce here the climate benefit of sequestration (CBS), a metric that quantifies the radiative effect of fixing carbon dioxide from the atmosphere and retaining it for a period of time in an ecosystem before releasing it back as the result of respiratory processes and disturbances. In order to quantify CBS, we present a formal definition of carbon sequestration (CS) as the integral of an amount of carbon removed from the atmosphere stored over the time horizon it remains within an ecosystem. Both metrics incorporate the separate effects of (i) inputs (amount of atmospheric carbon removal) and (ii) transit time (time of carbon retention) on carbon sinks, which can vary largely for different ecosystems or forms of management. These metrics can be useful for comparing the climate impacts of carbon removals by different sinks over specific time horizons, to assess the climate impacts of ecosystem management, and to obtain direct quantifications of climate impacts as the net effect of carbon emissions by sources versus removals by sinks.


Sign in / Sign up

Export Citation Format

Share Document