scholarly journals 5G-FOG: Freezing of Gait Identification in Multi-class Softmax Neural Network Exploiting 5G Spectrum

Author(s):  
Jan Sher Khan ◽  
Ahsen Tahir ◽  
Jawad Ahmad ◽  
Syed Aziz Shah ◽  
Qammer H. Abbasi ◽  
...  
Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1433 ◽  
Author(s):  
Ahsen Tahir ◽  
Jawad Ahmad ◽  
Syed Aziz Shah ◽  
Gordon Morison ◽  
Dawn A. Skelton ◽  
...  

Freezing of Gait (FOG) is an episodic absence of forward movement in Parkinson’s Disease (PD) patients and represents an onset of disabilities. FOG hinders daily activities and increases fall risk. There is high demand for automating the process of FOG detection due to its impact on health and well being of individuals. This work presents WiFreeze, a noninvasive, line of sight, and lighting agnostic WiFi-based sensing system, which exploits ambient 5G spectrum for detection and classification of FOG. The core idea is to utilize the amplitude variations of wireless Channel State Information (CSI) to differentiate between FOG and activities of daily life. A total of 225 events with 45 FOG cases are captured from 15 patients with the help of 30 subcarriers and classification is performed with a deep neural network. Multiresolution scalograms are proposed for time–frequency signatures of human activities, due to their ability to capture and detect transients in CSI signals caused by transitions in human movements. A very deep Convolutional Neural Network (CNN), VGG-8K, with 8K neurons each, in fully connected layers is engineered and proposed for transfer learning with multiresolution scalogram features for detection of FOG. The proposed WiFreeze system outperforms all existing wearable and vision-based systems as well as deep CNN architectures with the highest accuracy of 99.7% for FOG detection. Furthermore, the proposed system provides the highest classification accuracies of 94.3% for voluntary stop and 97.6% for walking slow activities, with improvements of 9% and 23%, respectively, over the best performing state-of-the-art deep CNN architecture.


10.29007/xwpt ◽  
2018 ◽  
Author(s):  
Ripal Patel ◽  
Vivek Tank ◽  
Jinish Brahmbhatt ◽  
Sanchit Puranik ◽  
Khushboo Desai

With the increase in the number of thefts, robberies and encroaching in the world, the existing security system is not sufficient. Hence to circumvent this problem the demand of bio-metric systems is increased, as they provide more dependable and effective means of identity confirmation. One such bio-metric security that has seen an uproar in the recent years is the gait identification. Gait recognition targets fundamentally to address this problem by recognizing people based on the way they walk. First of all, silhouette of the persons is extracted. Moreover, step size of the person is considered as unique feature for representing gait and effectively classify the person based on gait. Finally, features are feed to neural network for classification. The proposed approach gives better accuracy.


Sign in / Sign up

Export Citation Format

Share Document