MFS-Fading Regularization Method for Inverse BVPs in Anisotropic Heat Conduction

Author(s):  
Liviu Marin
2016 ◽  
Vol 26 (3) ◽  
pp. 623-640 ◽  
Author(s):  
Sara Beddiaf ◽  
Laurent Autrique ◽  
Laetitia Perez ◽  
Jean-Claude Jolly

Abstract Inverse three-dimensional heat conduction problems devoted to heating source localization are ill posed. Identification can be performed using an iterative regularization method based on the conjugate gradient algorithm. Such a method is usually implemented off-line, taking into account observations (temperature measurements, for example). However, in a practical context, if the source has to be located as fast as possible (e.g., for diagnosis), the observation horizon has to be reduced. To this end, several configurations are detailed and effects of noisy observations are investigated.


2006 ◽  
Vol 2 (S235) ◽  
pp. 189-189
Author(s):  
N. Asai ◽  
N. Fukuda ◽  
R. Matsumoto

AbstractWe carried out 3D magnetohydrodynamic simulations of a subcluster moving in turbulent ICM by including anisotropic heat conduction. Since magnetic fields stretched along the subcluster surface suppress the heat conduction across the front, cold fronts are formed and sustained.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
Carlo Nipoti ◽  
L. Posti ◽  
S. Ettori ◽  
M. Bianconi

Clusters of galaxies are embedded in halos of optically thin, gravitationally stratified, weakly magnetized plasma at the system’s virial temperature. Owing to radiative cooling and anisotropic heat conduction, such intracluster medium (ICM) is subject to local instabilities, which are combinations of the thermal, magnetothermal and heat-flux-driven buoyancy instabilities. If the ICM rotates significantly, its stability properties are substantially modified and, in particular, also the magnetorotational instability (MRI) can play an important role. We study simple models of rotating cool-core clusters and we demonstrate that the MRI can be the dominant instability over significant portions of the clusters, with possible implications for the dynamics and evolution of the cool cores. Our results give further motivation for measuring the rotation of the ICM with future X-ray missions such as ASTRO-H and ATHENA.


Sign in / Sign up

Export Citation Format

Share Document