Middle-Aged and Old Supernova Remnants

Author(s):  
Jacco Vink
2018 ◽  
Vol 854 (1) ◽  
pp. 71 ◽  
Author(s):  
Aya Bamba ◽  
Yutaka Ohira ◽  
Ryo Yamazaki ◽  
Makoto Sawada ◽  
Yukikatsu Terada ◽  
...  

1983 ◽  
Vol 101 ◽  
pp. 289-293
Author(s):  
R. Petre ◽  
C. R. Canizares ◽  
P. F. Winkler ◽  
F. D. Seward ◽  
R. Willingale ◽  
...  

We present soft X-ray photomosaic images of two supernova remnants, Puppis A and IC 443, constructed from a series of exposures by the Einstein imaging instruments. The complex morphologies displayed in these images reflect the interaction between “middle-aged” supernova remnants and various components of the interstellar medium. Surface brightness variations across Puppis A suggest that inhomogeneities on scales from 0.2 to 30 pc are present in the interstellar medium, while the structure of IC 443 is apparently dominated by the interaction between the remnant and a giant molecular cloud.


2019 ◽  
Vol 490 (3) ◽  
pp. 4317-4333 ◽  
Author(s):  
S Celli ◽  
G Morlino ◽  
S Gabici ◽  
F A Aharonian

ABSTRACT The escape process of particles accelerated at supernova remnant (SNR) shocks is one of the poorly understood aspects of the shock acceleration theory. Here we adopt a phenomenological approach to study the particle escape and its impact on the gamma-ray spectrum resulting from hadronic collisions both inside and outside of a middle-aged SNR. Under the assumption that in the spatial region immediately outside of the remnant the diffusion coefficient is suppressed with respect to the average Galactic one, we show that a significant fraction of particles are still located inside the SNR long time after their nominal release from the acceleration region. This fact results into a gamma-ray spectrum that resembles a broken power law, similar to those observed in several middle-aged SNRs. Above the break, the spectral steepening is determined by the diffusion coefficient outside of the SNR and by the time dependence of maximum energy. Consequently, the comparison between the model prediction and actual data will contribute to determining these two quantities, the former being particularly relevant within the predictions of the gamma-ray emission from the halo of escaping particles around SNRs, which could be detected with future Cherenkov telescope facilities. We also calculate the spectrum of runaway particles injected into the Galaxy by an individual remnant. Assuming that the acceleration stops before the SNR enters the snowplow phase, we show that the released spectrum can be a featureless power law only if the accelerated spectrum is ∝ p−α with α > 4.


2003 ◽  
Vol 593 (1) ◽  
pp. 370-376 ◽  
Author(s):  
S. P. Hendrick ◽  
K. J. Borkowski ◽  
S. P. Reynolds

Sign in / Sign up

Export Citation Format

Share Document