AutoIDL: Automated Imbalanced Data Learning via Collaborative Filtering

Author(s):  
Jingqi Zhang ◽  
Zhongbin Sun ◽  
Yong Qi
Author(s):  
Changjie Cao ◽  
Zongyong Cui ◽  
Liying Wang ◽  
Jielei Wang ◽  
Zongjie Cao ◽  
...  

2012 ◽  
Vol 7 (1) ◽  
pp. 238-244
Author(s):  
Yuanfang Dong ◽  
Xiongfei Li ◽  
Haiying Zhao

Author(s):  
Muhammad Imran Sharif ◽  
Muhammad Attique Khan ◽  
Musaed Alhussein ◽  
Khursheed Aurangzeb ◽  
Mudassar Raza

AbstractMulticlass classification of brain tumors is an important area of research in the field of medical imaging. Since accuracy is crucial in the classification, a number of techniques are introduced by computer vision researchers; however, they still face the issue of low accuracy. In this article, a new automated deep learning method is proposed for the classification of multiclass brain tumors. To realize the proposed method, the Densenet201 Pre-Trained Deep Learning Model is fine-tuned and later trained using a deep transfer of imbalanced data learning. The features of the trained model are extracted from the average pool layer, which represents the very deep information of each type of tumor. However, the characteristics of this layer are not sufficient for a precise classification; therefore, two techniques for the selection of features are proposed. The first technique is Entropy–Kurtosis-based High Feature Values (EKbHFV) and the second technique is a modified genetic algorithm (MGA) based on metaheuristics. The selected features of the GA are further refined by the proposed new threshold function. Finally, both EKbHFV and MGA-based features are fused using a non-redundant serial-based approach and classified using a multiclass SVM cubic classifier. For the experimental process, two datasets, including BRATS2018 and BRATS2019, are used without increase and have achieved an accuracy of more than 95%. The precise comparison of the proposed method with other neural nets shows the significance of this work.


2021 ◽  
Vol 14 (S3) ◽  
Author(s):  
Van Tinh Nguyen ◽  
Thi Tu Kien Le ◽  
Tran Quoc Vinh Nguyen ◽  
Dang Hung Tran

Abstract Background Developing efficient and successful computational methods to infer potential miRNA-disease associations is urgently needed and is attracting many computer scientists in recent years. The reason is that miRNAs are involved in many important biological processes and it is tremendously expensive and time-consuming to do biological experiments to verify miRNA-disease associations. Methods In this paper, we proposed a new method to infer miRNA-disease associations using collaborative filtering and resource allocation algorithms on a miRNA-disease-lncRNA tripartite graph. It combined the collaborative filtering algorithm in CFNBC model to solve the problem of imbalanced data and the method for association prediction established multiple types of known associations among multiple objects presented in TPGLDA model. Results The experimental results showed that our proposed method achieved a reliable performance with Area Under Roc Curve (AUC) and Area Under Precision-Recall Curve (AUPR) values of 0.9788 and 0.9373, respectively, under fivefold-cross-validation experiments. It outperformed than some other previous methods such as DCSMDA and TPGLDA. Furthermore, it demonstrated the ability to derive new associations between miRNAs and diseases among 8, 19 and 14 new associations out of top 40 predicted associations in case studies of Prostatic Neoplasms, Heart Failure, and Glioma diseases, respectively. All of these new predicted associations have been confirmed by recent literatures. Besides, it could discover new associations for new diseases (or miRNAs) without any known associations as demonstrated in the case study of Open-angle glaucoma disease. Conclusion With the reliable performance to infer new associations between miRNAs and diseases as well as to discover new associations for new diseases (or miRNAs) without any known associations, our proposed method can be considered as a powerful tool to infer miRNA-disease associations.


Sign in / Sign up

Export Citation Format

Share Document