scholarly journals Explainable Deep Learning for Fault Prognostics in Complex Systems: A Particle Accelerator Use-Case

Author(s):  
Lukas Felsberger ◽  
Andrea Apollonio ◽  
Thomas Cartier-Michaud ◽  
Andreas Müller ◽  
Benjamin Todd ◽  
...  
2021 ◽  
Author(s):  
Alexander Scheinker ◽  
Frederick Cropp ◽  
Sergio Paiagua ◽  
Daniele Filippetto

Abstract Machine learning (ML) tools are able to learn relationships between the inputs and outputs of large complex systems directly from data. However for time-varying systems, the predictive capabilities of ML tools degrade if the systems are no longer accurately represented by the data with which the ML models were trained. For complex systems, re-training is only possible if the changes are slow relative to the rate at which large numbers of new input-output training data can be non-invasively recorded. In this work, we present an approach to deep learning for time-varying systems which does not require re-training. Our approach is to include adaptive feedback in the architecture of deep generative convolutional neural networks (CNN). The feedback is based only on available system output measurements and is applied in the encoded low-dimensional dense layers of the encoder-decoder CNNs. Our approach is inspired by biological systems in which separate groups of neurons interact and are controlled and synchronized by external feedbacks. We demonstrate this approach by developing an inverse model of a complex charged particle accelerator system, mapping output beam measurements to input beam distributions, while both the accelerator components and the unknown input beam distribution vary rapidly with time. We demonstrate our methods on experimental measurements of the input and output beam distributions of the HiRES ultra-fast electron diffraction (UED) beam line at Lawrence Berkeley National Laboratory. Our method can be successfully used to aid both physics and ML-based surrogate online models to provide non-invasive beam diagnostics. We also demonstrate our method for automatically tracking the time varying quantum efficiency map of a particle accelerator’s photocathode.


2021 ◽  
Vol 156 ◽  
pp. 107650
Author(s):  
Haoxiang Wang ◽  
Chao Liu ◽  
Dongxiang Jiang ◽  
Zhanhong Jiang

Author(s):  
Yilin Yan ◽  
Jonathan Chen ◽  
Mei-Ling Shyu

Stance detection is an important research direction which attempts to automatically determine the attitude (positive, negative, or neutral) of the author of text (such as tweets), towards a target. Nowadays, a number of frameworks have been proposed using deep learning techniques that show promising results in application domains such as automatic speech recognition and computer vision, as well as natural language processing (NLP). This article shows a novel deep learning-based fast stance detection framework in bipolar affinities on Twitter. It is noted that millions of tweets regarding Clinton and Trump were produced per day on Twitter during the 2016 United States presidential election campaign, and thus it is used as a test use case because of its significant and unique counter-factual properties. In addition, stance detection can be utilized to imply the political tendency of the general public. Experimental results show that the proposed framework achieves high accuracy results when compared to several existing stance detection methods.


Author(s):  
Andrés Ruiz-Tagle Palazuelos ◽  
Enrique López Droguett ◽  
Rodrigo Pascual

With the availability of cheaper multi-sensor systems, one has access to massive and multi-dimensional sensor data for fault diagnostics and prognostics. However, from a time, engineering and computational perspective, it is often cost prohibitive to manually extract useful features and to label all the data. To address these challenges, deep learning techniques have been used in the recent years. Within these, convolutional neural networks have shown remarkable performance in fault diagnostics and prognostics. However, this model present limitations from a prognostics and health management perspective: to improve its feature extraction generalization capabilities and reduce computation time, ill-based pooling operations are employed, which require sub-sampling of the data, thus loosing potentially valuable information regarding an asset’s degradation process. Capsule neural networks have been recently proposed to address these problems with strong results in computer vision–related classification tasks. This has motivated us to extend capsule neural networks for fault prognostics and, in particular, remaining useful life estimation. The proposed model, architecture and algorithm are tested and compared to other state-of-the art deep learning models on the benchmark Commercial Modular Aero Propulsion System Simulation turbofans data set. The results indicate that the proposed capsule neural networks are a promising approach for remaining useful life prognostics from multi-dimensional sensor data.


Sign in / Sign up

Export Citation Format

Share Document