Multi-job Associated Task Scheduling Based on Task Duplication and Insertion for Cloud Computing

Author(s):  
Yuqi Fan ◽  
Lunfei Wang ◽  
Jie Chen ◽  
Zhifeng Jin ◽  
Lei Shi ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lei Shi ◽  
Jing Xu ◽  
Lunfei Wang ◽  
Jie Chen ◽  
Zhifeng Jin ◽  
...  

With the emergence and development of various computer technologies, many jobs processed in cloud computing systems consist of multiple associated tasks which follow the constraint of execution order. The task of each job can be assigned to different nodes for execution, and the relevant data are transmitted between nodes to complete the job processing. The computing or communication capabilities of each node may be different due to processor heterogeneity, and hence, a task scheduling algorithm is of great significance for job processing performance. An efficient task scheduling algorithm can make full use of resources and improve the performance of job processing. The performance of existing research on associated task scheduling for multiple jobs needs to be improved. Therefore, this paper studies the problem of multijob associated task scheduling with the goal of minimizing the jobs’ makespan. This paper proposes a task Duplication and Insertion algorithm based on List Scheduling (DILS) which incorporates dynamic finish time prediction, task replication, and task insertion. The algorithm dynamically schedules tasks by predicting the completion time of tasks according to the scheduling of previously scheduled tasks, replicates tasks on different nodes, reduces transmission time, and inserts tasks into idle time slots to speed up task execution. Experimental results demonstrate that our algorithm can effectively reduce the jobs’ makespan.


Author(s):  
Ramandeep Kaur ◽  
Navpreet Kaur

The cloud computing can be essentially expressed as aconveyance of computing condition where distinctive assets are conveyed as a support of the client or different occupants over the web. The task scheduling basically concentrates on improving the productive use of assets and henceforth decrease in task fruition time. Task scheduling is utilized to allot certain tasks to specific assets at a specific time occurrence. A wide range of systems has been exhibited to take care of the issues of scheduling of various tasks. Task scheduling enhances the productive use of asset and yields less reaction time with the goal that the execution of submitted tasks happens inside a conceivable least time. This paper talks about the investigation of need, length and due date based task scheduling calculations utilized as a part of cloud computing.


Author(s):  
Ge Weiqing ◽  
Cui Yanru

Background: In order to make up for the shortcomings of the traditional algorithm, Min-Min and Max-Min algorithm are combined on the basis of the traditional genetic algorithm. Methods: In this paper, a new cloud computing task scheduling algorithm is proposed, which introduces Min-Min and Max-Min algorithm to generate initialization population, and selects task completion time and load balancing as double fitness functions, which improves the quality of initialization population, algorithm search ability and convergence speed. Results: The simulation results show that the algorithm is superior to the traditional genetic algorithm and is an effective cloud computing task scheduling algorithm. Conclusion: Finally, this paper proposes the possibility of the fusion of the two quadratively improved algorithms and completes the preliminary fusion of the algorithm, but the simulation results of the new algorithm are not ideal and need to be further studied.


Sign in / Sign up

Export Citation Format

Share Document