scholarly journals Doctor Imitator: A Graph-Based Bone Age Assessment Framework Using Hand Radiographs

Author(s):  
Jintai Chen ◽  
Bohan Yu ◽  
Biwen Lei ◽  
Ruiwei Feng ◽  
Danny Z. Chen ◽  
...  
2011 ◽  
Vol 340 ◽  
pp. 259-265
Author(s):  
Long Ke Ran ◽  
Ling He ◽  
Zhong Chen

In the research of Automatic bone age assessment,the most efficient location and successful extraction of regions of interest(ROI) from hand radiographs is one of the most difficult and important key technologies. Based on using shape information for phalanges and carpals, a background prediction method is propoesd , which uses a two-dimensional third order polynomial linear regression to fit background. And we also localize the key points of carpal and phalange ROI by usingK-cosine algorithm, finally we extract the carpal and phalange ROI successfully and properly. Through experiments, the proposed method resulted in over 93% correct extraction from more than 60 left hand radiograph data. The proposed method is robust to gray value variation of background and the position and orientation of the hand, so it can be used directly for automatic bone age assessment in the following study.


2020 ◽  
Vol 2 (4) ◽  
pp. e190198
Author(s):  
Ian Pan ◽  
Grayson L. Baird ◽  
Simukayi Mutasa ◽  
Derek Merck ◽  
Carrie Ruzal-Shapiro ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Rui Liu ◽  
Yuanyuan Jia ◽  
Xiangqian He ◽  
Zhe Li ◽  
Jinhua Cai ◽  
...  

In the study of pediatric automatic bone age assessment (BAA) in clinical practice, the extraction of the object area in hand radiographs is an important part, which directly affects the prediction accuracy of the BAA. But no perfect segmentation solution has been found yet. This work is to develop an automatic hand radiograph segmentation method with high precision and efficiency. We considered the hand segmentation task as a classification problem. The optimal segmentation threshold for each image was regarded as the prediction target. We utilized the normalized histogram, mean value, and variance of each image as input features to train the classification model, based on ensemble learning with multiple classifiers. 600 left-hand radiographs with the bone age ranging from 1 to 18 years old were included in the dataset. Compared with traditional segmentation methods and the state-of-the-art U-Net network, the proposed method performed better with a higher precision and less computational load, achieving an average PSNR of 52.43 dB, SSIM of 0.97, DSC of 0.97, and JSI of 0.91, which is more suitable in clinical application. Furthermore, the experimental results also verified that hand radiograph segmentation could bring an average improvement for BAA performance of at least 13%.


Author(s):  
Vera Diete ◽  
Martin Wabitsch ◽  
Christian Denzer ◽  
Horst Jäger ◽  
Elke Hauth ◽  
...  

Objective The determination of bone age is a method for analyzing biological age and structural maturity. Bone age estimation is predominantly used in the context of medical issues, for example in endocrine diseases or growth disturbance. As a rule, conventional X-ray images of the left wrist and hand are used for this purpose. The aim of the present study is to investigate the extent to which MRI can be used as a radiation-free alternative for bone age assessment. Methods In 50 patients, 19 females and 31 males, in addition to conventional left wrist and hand radiographs, MRI was performed with T1-VIBE (n = 50) and T1-TSE (n = 34). The average age was 11.87 years (5.08 to 17.50 years). Bone age assessment was performed by two experienced investigators blinded for chronological age according to the most widely used standard of Greulich and Pyle. This method relies on a subjective comparison of hand radiographs with gender-specific reference images from Caucasian children and adolescents. In addition to interobserver and intraobserver variability, the correlation between conventional radiographs and MRI was determined using the Pearson correlation coefficient. Results Between the bone age determined from the MRI data and the results of the conventional X-ray images, a very good correlation was found for both T1-VIBE with r = 0.986 and T1-TSE with r = 0.982. Gender differences did not arise. The match for the interobserver variability was very good: r = 0.985 (CR), 0.966 (T1-VIBE) and 0.971 (T1-TSE) as well as the match for the intraobserver variability for investigator A (CR = 0.994, T1-VIBE = 0.995, T1-TSE = 0.998) and for investigator B (CR = 0.994, T1-VIBE = 0.993, T1-TSE = 0.994). Conclusion The present study shows that MRI of the left wrist and hand can be used as a possible radiation-free alternative to conventional X-ray imaging for bone age estimation in the context of medical issues. Key points:  Citation Format


Sign in / Sign up

Export Citation Format

Share Document