scholarly journals Complex Surface Singularities with Rational Homology Disk Smoothings

Author(s):  
Jonathan Wahl
Author(s):  
János Nagy ◽  
András Némethi

AbstractThe present note is part of a series of articles targeting the theory of Abel maps associated with complex normal surface singularities with rational homology sphere links (Nagy and Némethi in Math Annal 375(3):1427–1487, 2019; Nagy and Némethi in Adv Math 371:20, 2020; Nagy and Némethi in Pure Appl Math Q 16(4):1123–1146, 2020). Besides the general theory, by the study of specific families we wish to show the power of this new method. Indeed, using the general theory of Abel maps applied for elliptic singularities in this note we are able to prove several key properties for elliptic singularities (e.g. the statements of the next paragraph), which by ‘old’ techniques were not reachable. If $$({\widetilde{X}},E)\rightarrow (X,o)$$ ( X ~ , E ) → ( X , o ) is the resolution of a complex normal surface singularity and $$c_1:{\mathrm{Pic}}({\widetilde{X}})\rightarrow H^2({\widetilde{X}},{\mathbb {Z}})$$ c 1 : Pic ( X ~ ) → H 2 ( X ~ , Z ) is the Chern class map, then $${\mathrm{Pic}}^{l'}({\widetilde{X}}):= c_1^{-1}(l')$$ Pic l ′ ( X ~ ) : = c 1 - 1 ( l ′ ) has a (Brill–Noether type) stratification $$W_{l', k}:= \{{\mathcal {L}}\in {\mathrm{Pic}}^{l'}({\widetilde{X}})\,:\, h^1({\mathcal {L}})=k\}$$ W l ′ , k : = { L ∈ Pic l ′ ( X ~ ) : h 1 ( L ) = k } . In this note we determine it for elliptic singularities together with the stratification according to the cycle of fixed components. E.g., we show that the closure of any $$W(l',k)$$ W ( l ′ , k ) is an affine subspace. For elliptic singularities we also characterize the End Curve Condition and Weak End Curve Condition in terms of the Abel map, we provide several characterization of them, and finally we show that they are equivalent.


2006 ◽  
Vol 17 (09) ◽  
pp. 1013-1031 ◽  
Author(s):  
TOLGA ETGÜ ◽  
BURAK OZBAGCI

We describe explicit open books on arbitrary plumbings of oriented circle bundles over closed oriented surfaces. We show that, for a non-positive plumbing, the open book we construct is horizontal and the corresponding compatible contact structure is also horizontal and Stein fillable. In particular, on some Seifert fibered 3-manifolds we describe open books which are horizontal with respect to their plumbing description. As another application we describe horizontal open books isomorphic to Milnor open books for some complex surface singularities. Moreover we give examples of tight contact 3-manifolds supported by planar open books. As a consequence, the Weinstein conjecture holds for these tight contact structures [1].


2015 ◽  
Vol 52 (4) ◽  
pp. 1213-1223
Author(s):  
HEESANG PARK ◽  
ANDRAS I. STIPSICZ

2011 ◽  
Vol 48 (1) ◽  
pp. 135-144
Author(s):  
András Némethi ◽  
Meral Tosun

If M is the link of a complex normal surface singularity, then it carries a canonical contact structure ξcan, which can be identified from the topology of the 3-manifold M. We assume that M is a rational homology sphere. We compute the support genus, the binding number and the norm associated with the open books which support ζcan, provided that we restrict ourselves to the case of (analytic) Milnor open books. In order to do this, we determine monotonity properties of the genus and the Milnor number of all Milnor fibrations in terms of the Lipman cone.We generalize results of [3] valid for links of rational surface singularities, and we answer some questions of Etnyre and Ozbagci [7, section 8] regarding the above invariants.


1995 ◽  
Vol 66 (3) ◽  
pp. 251-265 ◽  
Author(s):  
Francisco Larrión ◽  
José Seade

1978 ◽  
Vol 232 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Alan H. Durfee

2008 ◽  
Vol 139 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Lev Birbrair ◽  
Alexandre Fernandes ◽  
Walter D. Neumann

2005 ◽  
Vol 9 (2) ◽  
pp. 757-811 ◽  
Author(s):  
Walter D Neumann ◽  
Jonathan Wahl

2010 ◽  
Vol 43 (2) ◽  
Author(s):  
Tadashi Tomaru

AbstractSince 15 years ago, I have been studying some relations between complex normal surfaces ([


Sign in / Sign up

Export Citation Format

Share Document