Efficient Fine-Grained Object Detection for Robot-Assisted WEEE Disassembly

Author(s):  
Ioannis Athanasiadis ◽  
Athanasios Psaltis ◽  
Apostolos Axenopoulos ◽  
Petros Daras
2018 ◽  
Vol 15 (02) ◽  
pp. 1850011 ◽  
Author(s):  
Frano Petric ◽  
Damjan Miklić ◽  
Zdenko Kovačić

The existing procedures for autism spectrum disorder (ASD) diagnosis are often time consuming and tiresome both for highly-trained human evaluators and children, which may be alleviated by using humanoid robots in the diagnostic process. Hence, this paper proposes a framework for robot-assisted ASD evaluation based on partially observable Markov decision process (POMDP) modeling, specifically POMDPs with mixed observability (MOMDPs). POMDP is broadly used for modeling optimal sequential decision making tasks under uncertainty. Spurred by the widely accepted autism diagnostic observation schedule (ADOS), we emulate ADOS through four tasks, whose models incorporate observations of multiple social cues such as eye contact, gestures and utterances. Relying only on those observations, the robot provides an assessment of the child’s ASD-relevant functioning level (which is partially observable) within a particular task and provides human evaluators with readable information by partitioning its belief space. Finally, we evaluate the proposed MOMDP task models and demonstrate that chaining the tasks provides fine-grained outcome quantification, which could also increase the appeal of robot-assisted diagnostic protocols in the future.


2021 ◽  
Author(s):  
Mengyuan Wang ◽  
Xuanyu Zhang ◽  
Chuanbo Yu ◽  
Tingyi Guo ◽  
Jingxiao Gu ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 3053 ◽  
Author(s):  
Thorsten Hoeser ◽  
Felix Bachofer ◽  
Claudia Kuenzer

In Earth observation (EO), large-scale land-surface dynamics are traditionally analyzed by investigating aggregated classes. The increase in data with a very high spatial resolution enables investigations on a fine-grained feature level which can help us to better understand the dynamics of land surfaces by taking object dynamics into account. To extract fine-grained features and objects, the most popular deep-learning model for image analysis is commonly used: the convolutional neural network (CNN). In this review, we provide a comprehensive overview of the impact of deep learning on EO applications by reviewing 429 studies on image segmentation and object detection with CNNs. We extensively examine the spatial distribution of study sites, employed sensors, used datasets and CNN architectures, and give a thorough overview of applications in EO which used CNNs. Our main finding is that CNNs are in an advanced transition phase from computer vision to EO. Upon this, we argue that in the near future, investigations which analyze object dynamics with CNNs will have a significant impact on EO research. With a focus on EO applications in this Part II, we complete the methodological review provided in Part I.


2018 ◽  
Vol 6 (2) ◽  
pp. 127-136
Author(s):  
Rafflesia Khan ◽  
◽  
Tarannum Fariha Raisa ◽  
Rameswar Debnath

2018 ◽  
Author(s):  
Rahul Dalal

Sign in / Sign up

Export Citation Format

Share Document