Material Removal Rate in Electric Discharge Machining with Aluminum Tool Electrode for Ti-6Al-4V Titanium Alloy

Author(s):  
Nguyen Huu Phan ◽  
Vu Ngoc Pi ◽  
Shailesh Shirguppikar ◽  
M. S. Patil ◽  
Mohsen Asghari Ilani ◽  
...  
Author(s):  
Sanjeev Kumar ◽  
Ajay Batish ◽  
Rupinder Singh ◽  
TP Singh

In the present study, the effect of cryogenic treatment on the machining performance of Ti–5Al–2.5Sn alpha titanium alloy was investigated during electric discharge machining. Untreated, shallow cryogenically treated (−110 ℃), and deep cryogenically treated (−184 ℃) titanium alloys were machined by varying current and pulse-on-time. The machining performance was measured in terms of higher material removal rate and microhardness and low tool wear rate and surface roughness. The results showed a significant improvement in the machining performance with deep cryogenically treated alloy when compared with shallow and untreated alloy. Current and pulse-on-time also affected the machinability of titanium alloy. Higher material removal rate and microhardness were observed when titanium alloy was machined at high current and pulse-on-time. During machining, carbon was deposited on the machined surface due to the breakdown of hydrocarbon dielectric at high temperature thereby, affecting its properties.


2015 ◽  
Vol 787 ◽  
pp. 406-410
Author(s):  
S. Santosh ◽  
S. Javed Syed Ibrahim ◽  
P. Saravanamuthukumar ◽  
K. Rajkumar ◽  
K.L. Hari Krishna

Magnesium alloys are used in many applications, particularly in orthopaedic implants are very difficult to machine by conventional processes because of their complex 3D structure and limited slip system at room temperature. Hence there is an inherent need for alternative processes for machining such intricate profiles. Electric Discharge Machining is growing rapidly in tool rooms, die shops and even in general shop floors of modern industries to facilitate complex machining for difficult-to-machine materials and provide better surface integrity. Therefore, the use of electric discharge machining on ZM21 magnesium alloy is attempted in this paper. Nanographite powder is added for machining zone to enhance the electrical conductivity of EDM oil by way it improves the machining performance. Machining parameters such as the current, pulse on time and pulse off time were process parameters to explore their effects on the material removal rate and tool wear rate. It is observed that, an increased material removal rate was due to the enhanced electrical and thermal conductivity of the EDM oil.


Author(s):  
Ravinder Kumar ◽  
Inderdeep Singh

Electric discharge sawing process is a novel process for the enrichment of capabilities of electric discharge machining. The process has been developed to cut materials at greater depths where the effect of flushing becomes ineffective. During electric discharge machining at greater depths, ineffective flushing prevents debris and carbon particles from leaving the machining zone and gets accumulated in the sparking zone reducing the spark efficiency. This reduces material removal rate and causes arcing or short circuiting which may damage the workpiece and/or tool surface. In the present experimental endeavor, a new process capable of preventing debris accumulation during machining of slots at large depth and subsequently increasing material removal rate has been developed. In the process, a reciprocating motion is given to the tool blade similar to the power hacksaw blade. An experimental investigation based on central composite design has been conducted on hybrid metal matrix composite to evaluate the effect of input parameters on material removal rate and tool wear rate. It has been found that the electric discharge sawing process is quick and effective as compared to the conventional cutting process.


Author(s):  
Banwait S.S. ◽  
◽  
Sanjay S ◽  

The present work explains the machining of Titanium alloy using Electric Discharge Machining & Electro-Chemical Machining. This work aims to analyze the role of Current, Pulse on Time, Voltage and hence optimize the Material Removal Rate and Surface Roughness in Electric Discharge Machining. In the same way, it also aims to analyze the role of Concentration, Feed, and Voltage and optimize the Material Removal Rate and Surface Roughness in Electro-Chemical Machining. The various approaches like Taguchi & Analysis of Variance are executed to study the performance characteristics of the input parameters on the output parameters. The whole work is followed by a validation test and hence confirming the obtained values. Thus, it reveals the acceptability of the model. The work tells that Material Removal Rate and Surface Finish effect is more in Electro-Chemical Machining as compared to Electric Discharge Machining. For Material Removal Rate, Current and Feed are more responsible parameters for Electric Discharge Machining. In the same way; electrolyte concentration and Feed are more responsible parameters for Electro-Chemical Machining respectively.


2021 ◽  
Vol 19 (5) ◽  
pp. 437-447
Author(s):  
Fahad Kazi ◽  
C.A Waghmare ◽  
M.S Sohani

Electric discharge machining is an advanced machining technique. Spark is initiated between the tool and work piece interface which has a gap between them. Low material removal rate as well as low surface finish is a major concern of this process. Therefore, Powder mixed electric discharge machining is developed. In PMEDM process, powders like silicon, aluminium, chromium, manganese, etc. are circulated along with dielectric fluid in a particular proportion. In this present study, aluminium powder is mixed in the dielectric fluid. The responses such as material removal rate, tool wear rate and surface roughness are measured by considering current, pulse on time and aluminium powder concentration as process parameters. Response surface methodology along with Fuzzy AHP TOPSIS and Grey relational analysis are used for optimization.


Sign in / Sign up

Export Citation Format

Share Document