aisi d2
Recently Published Documents


TOTAL DOCUMENTS

483
(FIVE YEARS 127)

H-INDEX

38
(FIVE YEARS 7)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 139
Author(s):  
Ki-Hong Kim ◽  
Won-Beom Lee ◽  
Tae-Hwan Kim ◽  
Seok-Won Son

Potential-controlled nitriding is an effective technique for enhancing the life of steel molds and dies by improving their surface hardness and toughness against fatigue damage. In this study, the effect of the nitriding potential on the microstructure and fracture toughness of nitrided AISI D2 steels was investigated. The nitrided layers were characterized by microhardness measurements, optical microscopy, and scanning electron microscopy, and their phases were identified by X-ray and electron backscatter diffraction. As the nitriding potential increased to 2.0 atm−1/2, an increase in the surface hardness and fracture toughness was observed with the growth of the compound layer. However, both the surface hardness and the fracture toughness decreased at the higher nitriding potential of 5.0 atm−1/2 owing to the increased porosity in the compound layers, which mainly consist of the ε (Fe2–3N) phase. Additionally, by observing crack growth behavior, the fracture toughness was analyzed considering the material characteristics of the diffusion and compound layers. The fracture toughness was influenced by the location of the initial Palmqvist cracks due to the localized plastic deformation of the diffusion layer and increased crack length due to the porous compound layer.


Optik ◽  
2021 ◽  
pp. 168469
Author(s):  
Amir Moradiani ◽  
Zeinab Malekshahi Beiranvand ◽  
R.M. Chandima Ratnayake ◽  
Amir Aliabadi ◽  
Mehdi Rasoulinia

Sadhana ◽  
2021 ◽  
Vol 46 (4) ◽  
Author(s):  
Abhimanyu Chaudhari ◽  
Ashwani Sharma ◽  
Akash Subhash Awale ◽  
Mohd Zaheer Khan Yusufzai ◽  
Meghanshu Vashista

Author(s):  
Abhimanyu Chaudhari ◽  
Mohd Zaheer Khan Yusufzai ◽  
Meghanshu Vashista

Ultrasonic vibration-assisted dry grinding is a sustainable hybrid manufacturing technology that decreases the negative environmental impact of coolant, reduces manufacturing costs, and improves surface integrity. The present investigation analyses the mechanisms associated with ultrasonic vibration-assisted dry grinding of AISI D2 tool steel with an alumina grinding wheel. It also compares the influence of traditional dry grinding and traditional wet grinding modes with the ultrasonic vibration-assisted dry grinding mode at different ultrasonic vibration amplitudes. Ultrasonic vibration was applied to the sample in the longitudinal feed direction. Further, kinematics of the abrasive grit path during the traditional grinding and ultrasonic vibration-assisted dry grinding is presented schematically. In this research, the impacts of ultrasonic vibration amplitude as well as the depth of cut on the process yields such as ground surface topography, grinding force, specific grinding energy, force ratio, surface finish, microstructure, and hardness were investigated experimentally. Experimental results revealed that the highest decline in tangential and normal grinding forces in ultrasonic vibration-assisted dry grinding at ultrasonic vibration amplitude 10 µm and the reduction in surface roughness parameter ( Ra, Rq, and Rz) in ultrasonic vibration-assisted dry grinding was 43.23%, 42.59%, and 33.69%, respectively, in comparison to those in traditional dry grinding and 26.35%, 26.94%, and 27.48%, respectively, in comparison to those in traditional wet grinding. It was observed that ultrasonic vibration-assisted dry grinding is beneficial as the profile produced by ultrasonic vibration-assisted dry grinding has a comparatively flat tip, and profile points are shifted to the bottom of the mean line. This study is expected to assist ultrasonic vibration-assisted dry grinding of hard materials.


2021 ◽  
Author(s):  
Zuofa Liu ◽  
Jie Zhou ◽  
Hang Wang ◽  
Qiuyun Wang ◽  
Qiang Liang ◽  
...  

Abstract In this work, a laser polishing-hardening (LPH) method with integration and high efficiency for the treatment of AISI D2 tool steel was proposed, and the effects of laser hardening (LH), laser polishing (LP) and LPH treatments on the surface topography and microhardness were examined. The results show that LH method had a negligible effect on the surface roughness of the treated sample, while the surface roughness Ra of LP and LPH specimens was reduced by 74.6% and 80.9% respectively, indicating that the milled surface topography had been significantly improved, especially LPH was more effective in reducing the roughness. Besides, the polishing efficiency of LPH was 10 times that of LP approach. In terms of hardness improvement, the near-surface microhardness of LH and LPH samples increased by 1.5 times and 1.3 times respectively, and the effective hardened zone (EHZ) depth was 0.42 mm and 0.24 mm respectively, demonstrating that these two laser processing methods had a beneficial effect on the cross-section microhardness of D2 tool steel, while the increase of LP on the microhardness was insignificant. The comprehensive analysis of the surface morphology and microhardness of LPH specimen indicates that LPH was a feasible laser surface treatment method for D2 tool steel. On the premise of ensuring a high surface finish, the polishing efficiency can be remarkably improved, the subsurface microhardness and EHZ depth of processed specimen can be also significantly enhanced, which provided a feasible idea for the application of laser surface treatment technology in industrial mold production.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1445
Author(s):  
André Temmler ◽  
Magdalena Cortina ◽  
Ingo Ross ◽  
Moritz E. Küpper ◽  
Silja-Katharina Rittinghaus

Within the scope of this study, basic research was carried out on laser micro polishing of the tool steel 1.2379 (AISI D2) using a square, top-hat shaped intensity distribution. The influence of three different quadratic laser beam sizes (100 µm, 200 µm, 400 µm side length) and fluences up to 12 J/cm2 on the resulting surface topography and roughness were investigated. Surface topography was analyzed by microscopy, white light interferometry, spectral roughness analysis, and 1D fast Fourier transformation. Scanning electron microscopy and electrical discharge analyses indicate that chromium carbides are the source of undesired surface features such as craters and dimples, which were generated inherently to the remelting process. Particularly for high laser fluences, a noticeable stripe structure was observed, which is typically a characteristic of a continuous remelting process. Although the micro-roughness was significantly reduced, often, the macro-roughness was increased. The results show that smaller laser polishing fluences are required for larger laser beam dimensions. Additionally, the same or even a lower surface roughness and less undesired surface features were created for larger laser beam dimensions. This shows a potential path for industrial applications of laser micro polishing, where area rates of up to several m2/min might be achievable with commercially available laser beam sources.


2021 ◽  
Vol 52 (11) ◽  
pp. 4753-4766
Author(s):  
Mojtaba Najafizadeh ◽  
Mehran Ghasempour-Mouziraji ◽  
Behzad Sadeghi ◽  
Pasquale Cavaliere

AbstractSilicon nitride (Si3N4) coating was deposited on AISI D2 tool steel through employing duplex surface treatments—pack siliconizing followed by plasma nitriding. Pack cementation was performed at 650 °C, 800 °C, and 950 °C for 2 and 3 hours by using various mixtures to realize the silicon coating. X-ray diffraction analyses and scanning electron microscopy observations were employed for demonstrating the optimal process conditions leading to high coating adhesion, uniform thickness, and composition. The optimized conditions belonging to siliconizing were employed to produce samples to be further processed via plasma nitriding. This treatment was performed with a gas mixture of 75 pct H2-25 pct N2, at the temperature of 550 °C for 7 hours. The results showed that different nitride phases such as Si3N4-β, Si3N4-γ, Fe4N, and Fe3N can be recognized as coatings reinforcements. It was demonstrated that the described composite coating procedure allowed to obtain a remarkable increase in hardness (80 pct higher with respect to the substrate) and wear resistance (30 pct decrease of weight loss) of the tool steel.


Author(s):  
Abdelwaheb. Zeidi ◽  
Fatma. Ben Saada ◽  
Khaled. Elleuch ◽  
Hakan. Atapek
Keyword(s):  

Author(s):  
Mohamed Baccar Mhamdi ◽  
Wajdi Rajhi ◽  
Mohamed Boujelbene ◽  
Sahbi Ben Salem ◽  
Sonia Ezeddini ◽  
...  

Understanding the chip formation mechanisms during machining is an important factor to facilitate the choice of cutting tools and machining parameters. Despite the appearance of new sophisticated methods and advanced equipment, the technique so called quick-Stop Test (QST) remains efficient, less costly, and easier to apply in the investigation of chip formation in cutting process. In present paper a new Quick-Stop Device QSD is designed, numerically simulated, implemented, and tested. The reformed QST technique uses a QSD device which operates on the modified Charpy pendulum. Accordingly, design of new QSD is presented and deeply described, and 2D FE modeling of the new QST, including the application of the appropriate boundary conditions, has been carried out. Moreover, chip formation and morphology for different cutting conditions have been effectively simulated. Subsequently, quick stop cutting operations including metal cutting tests of high alloyed tool steel (AISI D2) using fabricated new QSD are performed. Preliminary results of quick-stop experiment from current investigation prove the effectiveness of the new designed QSD in matter of rigidity, safety, and absence of vibration, while providing a fast set up time and allowing extremely short workpiece-cutting tool separation time and guarantee the generation of chip with its root. The photomicrographs of chip root samples gathered from hard metal cutting experiments including various cutting speeds machining conditions, enables clear observation of segmented chip formation mechanisms, thereby, highly promising the new designed QSD for the purpose of investigation of the different cutting parameters influencing the chip formation and morphology.


Sign in / Sign up

Export Citation Format

Share Document