Visual Analytics for Extracting Trends from Spatio-temporal Data

Author(s):  
Michiel Dhont ◽  
Elena Tsiporkova ◽  
Tom Tourwé ◽  
Nicolás González-Deleito
2016 ◽  
pp. 620-642 ◽  
Author(s):  
Erdem Kaya ◽  
Mustafa Tolga Eren ◽  
Candemir Doger ◽  
Selim Saffet Balcisoy

Conventional visualization techniques and tools may need to be modified and tailored for analysis purposes when the data is spatio-temporal. However, there could be a number of pitfalls for the design of such analysis tools that completely rely on the well-known techniques with well-known limitations possibly due to the multidimensionality of spatio-temporal data. In this chapter, an experimental study to empirically testify whether widely accepted advantages and limitations of 2D and 3D representations are valid for the spatio-temporal data visualization is presented. The authors implemented two simple representations, namely density map and density cube, and conducted a laboratory experiment to compare these techniques from task completion time and correctness perspectives. Results of the experiment revealed that the validity of the generally accepted properties of 2D and 3D visualization needs to be reconsidered when designing analytical tools to analyze spatio-temporal data.


2017 ◽  
Vol 29 (12) ◽  
pp. 2245 ◽  
Author(s):  
Zhiguang Zhou ◽  
Chang Sun ◽  
Dandan Le ◽  
Chen Shi ◽  
Yuhua Liu

Big Data ◽  
2016 ◽  
pp. 615-637
Author(s):  
Erdem Kaya ◽  
Mustafa Tolga Eren ◽  
Candemir Doger ◽  
Selim Saffet Balcisoy

Conventional visualization techniques and tools may need to be modified and tailored for analysis purposes when the data is spatio-temporal. However, there could be a number of pitfalls for the design of such analysis tools that completely rely on the well-known techniques with well-known limitations possibly due to the multidimensionality of spatio-temporal data. In this chapter, an experimental study to empirically testify whether widely accepted advantages and limitations of 2D and 3D representations are valid for the spatio-temporal data visualization is presented. The authors implemented two simple representations, namely density map and density cube, and conducted a laboratory experiment to compare these techniques from task completion time and correctness perspectives. Results of the experiment revealed that the validity of the generally accepted properties of 2D and 3D visualization needs to be reconsidered when designing analytical tools to analyze spatio-temporal data.


Author(s):  
Erdem Kaya ◽  
Mustafa Tolga Eren ◽  
Candemir Doger ◽  
Selim Saffet Balcisoy

Conventional visualization techniques and tools may need to be modified and tailored for analysis purposes when the data is spatio-temporal. However, there could be a number of pitfalls for the design of such analysis tools that completely rely on the well-known techniques with well-known limitations possibly due to the multidimensionality of spatio-temporal data. In this chapter, an experimental study to empirically testify whether widely accepted advantages and limitations of 2D and 3D representations are valid for the spatio-temporal data visualization is presented. The authors implemented two simple representations, namely density map and density cube, and conducted a laboratory experiment to compare these techniques from task completion time and correctness perspectives. Results of the experiment revealed that the validity of the generally accepted properties of 2D and 3D visualization needs to be reconsidered when designing analytical tools to analyze spatio-temporal data.


Author(s):  
T. von Landesberger ◽  
Sebastian Bremm ◽  
Natalia Andrienko ◽  
Gennady Andrienko ◽  
Maria Tekusova

2019 ◽  
Vol 942 (12) ◽  
pp. 22-28
Author(s):  
A.V. Materuhin ◽  
V.V. Shakhov ◽  
O.D. Sokolova

Optimization of energy consumption in geosensor networks is a very important factor in ensuring stability, since geosensors used for environmental monitoring have limited possibilities for recharging batteries. The article is a concise presentation of the research results in the area of increasing the energy consumption efficiency for the process of collecting spatio-temporal data with wireless geosensor networks. It is shown that in the currently used configurations of geosensor networks there is a predominant direction of the transmitted traffic, which leads to the fact that through the routing nodes that are close to the sinks, a much more traffic passes than through other network nodes. Thus, an imbalance of energy consumption arises in the network, which leads to a decrease in the autonomous operation time of the entire wireless geosensor networks. It is proposed to use the possible mobility of sinks as an optimization resource. A mathematical model for the analysis of the lifetime of a wireless geosensor network using mobile sinks is proposed. The model is analyzed from the point of view of optimization energy consumption by sensors. The proposed approach allows increasing the lifetime of wireless geosensor networks by optimizing the relocation of mobile sinks.


Sign in / Sign up

Export Citation Format

Share Document