Life Cycle Thinking and Environmental Assessment of Energy Systems from Supply and Demand Perspectives

Author(s):  
Mehzabeen Mannan ◽  
Sami G. Al-Ghamdi
2005 ◽  
Vol 895 ◽  
Author(s):  
Stig Olsen ◽  
Michael Søgaard Jørgensen

AbstractThe concept of life cycle assessment (LCA) is build upon the object of assessment, namely the functional unit, i.e. all impacts etc. are related to a specific service or function in the society. In a LCA context, the assessment of emerging technologies like Nanotechnology is challenging due to a number of knowledge gaps. It may not be known exactly what is the function (or functional unit) or what the technology may substitute and production may still be at an experimental level, raising questions about technology or materials choice.For prospective LCA studies methodologies like “consequential LCA” may be useful because future changes are taken into account. However, it still does not suffice for emerging technologies. In a recent “Green Technology Foresight” project a methodology was developed based on five elements: Life-cycle thinking, systems approach, a broad dialogue based understanding of the environment, precaution as a principle and finally, prevention as preferred strategy. When assessing emerging technologies three levels should be considered. First order effects are connected directly to production, use and disposal. Second order are effects from interaction with other parts of the economy from more intelligent design and management of processes, products, services, product chains etc. and the effect on the stocks of products. An example could be dematerialisation. Rebound effects may be considered as third order effects, like when efficiency gains stimulate new demands, which balances or overcompensates the savings.In the Micro/Nano Production area a range of new possibilities arise both within applications, production technology and materials. The Department of Manufacturing Engineering and Management at The Technical University of Denmark has staked on a joint effort in manufacturing engineering and environmental assessment for eco efficiency improvement. A review of knowledge and studies on environmental assessments in the micro/nano technology area is performed and will be used to further detail the general framework for assessment outlined above to be more specific for micro/nano production.


Energy ◽  
2021 ◽  
pp. 120978
Author(s):  
Géremi Gilson Dranka ◽  
Paula Ferreira ◽  
A. Ismael F. Vaz

Author(s):  
Serenella Sala ◽  
Andrea Martino Amadei ◽  
Antoine Beylot ◽  
Fulvio Ardente

Abstract Purpose Life cycle thinking (LCT) and life cycle assessment (LCA) are increasingly considered pivotal concept and method for supporting sustainable transitions. LCA plays a relevant role in decision support, for the ambition of a holistic coverage of environmental dimensions and for the identification of hotspots, possible trade-offs, and burden shifting among life cycle stages or impact categories. These features are also relevant when the decision support is needed in policy domain. With a focus on EU policies, the present study explores the evolution and implementation of life cycle concepts and approaches over three decades. Methods Adopting an historical perspective, a review of current European Union (EU) legal acts and communications explicitly mentioning LCT, LCA, life cycle costing (LCC), and environmental footprint (the European Product and Organisation Environmental Footprint PEF/OEF) is performed, considering the timeframe from 1990 to 2020. The documents are categorised by year and according to their types (e.g. regulations, directives, communications) and based on the covered sectors (e.g. waste, energy, buildings). Documents for which life cycle concepts and approaches had a crucial role are identified, and a shortlist of these legal acts and communications is derived. Results and discussion Over the years, LCT and life cycle approaches have been increasingly mentioned in policy. From the Ecolabel Regulation of 1992, to the Green Deal in 2019, life cycle considerations are of particular interest in the EU. The present work analysed a total of 159 policies and 167 communications. While in some sectors (e.g. products, vehicles, and waste) life cycle concepts and approaches have been adopted with higher levels of prescriptiveness, implementation in other sectors (e.g. food and agriculture) is only at a preliminary stage. Moreover, life cycle (especially LCT) is frequently addressed and cited only as a general concept and in a rather generic manner. Additionally, more stringent and rigorous methods (LCA, PEF/OEF) are commonly cited only in view of future policy developments, even if a more mature interest in lifecycle is evident in recent policies. Conclusion The EU has been a frontrunner in the implementation of LCT/LCA in policies. However, despite a growing trend in this implementation, the development of new stringent and mandatory requirements related to life cycle is still relatively limited. In fact, there are still issues to be solved in the interface between science and policy making (such as verification and market surveillance) to ensure a wider implementation of LCT and LCA.


2021 ◽  
Vol 23 (4) ◽  
pp. 1847-1860
Author(s):  
Christopher S. McCallum ◽  
Wanling Wang ◽  
W. John Doran ◽  
W. Graham Forsythe ◽  
Mark D. Garrett ◽  
...  

A life cycle thinking analysis (LCT) conducted on the production of vanillin via bamboo wet air oxidation compared to vanillin production from crude oil or kraft lignin.


2015 ◽  
Vol 81 ◽  
pp. 655-664 ◽  
Author(s):  
L. Branchini ◽  
P. Cagnoli ◽  
A. De Pascale ◽  
F. Lussu ◽  
V. Orlandini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document