An Accurate Frequency Estimation Algorithm by Using DFT and Cosine Windows

Author(s):  
Jinyu Liu ◽  
Lei Fan ◽  
Renqing Li ◽  
Wenbo He ◽  
Nian Liu ◽  
...  
Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 329
Author(s):  
Jiufei Luo ◽  
Haitao Xu ◽  
Kai Zheng ◽  
Xinyi Li ◽  
Song Feng

Asymmetric windows are of increasing interest to researchers because of the nonlinear and adjustable phase response, as well as alterable time delay. Short-time phase distortion can provide an essential improvement in speech coding, and also has better performance in speech recognition. The merits of asymmetric windows in the aspect of spectral behaviors have an important function in frequency component detection and parameter estimation. In this paper, the phase response of windows were further studied, and the phase characteristics of symmetric and asymmetric windows are described. The relationship between the barycenter of windows in the time domain, and the phase characteristic at the center of the main lobe in the frequency domain, was established. In light of the relationship, an improved version of the asymmetric window- based frequency estimation algorithm was proposed. The improved algorithm has advantages of straightforward implementation and computational efficiency. The numeric simulation results also indicate that the improved approach is more robust than the traditional method against additive random noise.


2007 ◽  
Author(s):  
Yunlong Zhu ◽  
Zhongkan Liu ◽  
Qishan Zhang ◽  
Dongkai Yang

2018 ◽  
Vol 12 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Wei Zhou ◽  
Liqun Gan ◽  
Hong Xiao ◽  
Yi Zhang ◽  
Haitao Xu ◽  
...  

This paper presents an improved frequency estimation algorithm based on the interpolated discrete Fourier transform. High-accurate frequency estimation can be achieved by taking the geometric mean of two independent estimates, which are derived from the real parts of the two largest spectral bins and the imaginary parts, respectively. In situations where only a small number of sine wave cycles are observed, the ability of the algorithm to cancel interference from image frequency components results in improvements in accuracy. The residual errors of the proposed algorithm have been theoretically analyzed with maximum side-lobe decaying windows, since the windows have simple and uniform analytical expression of interpolation algorithm. The performance of the proposed algorithm was investigated using both Hanning and three-term maximum side-lobe decaying windows. A comparative analysis of systematic errors and noise sensitivity was performed between the new algorithm and traditional algorithms. Both the root mean squared error and the probability density of the errors were investigated under noisy conditions. Simulation results demonstrated that the new algorithm is not only highly resistant to interference from image components but is also resistant to the effects of random noise. The results presented in the paper are useful for identifying the best choice of algorithm in practical engineering applications.


Sign in / Sign up

Export Citation Format

Share Document