Attention Mechanism Based Adversarial Attack Against Deep Reinforcement Learning

Author(s):  
Jinyin Chen ◽  
Xueke Wang ◽  
Yan Zhang ◽  
Haibin Zheng ◽  
Shouling Ji

2020 ◽  
Vol 38 (1) ◽  
pp. 49-64 ◽  
Author(s):  
Hiroshi Yamakawa

AbstractRecently, attention mechanisms have significantly boosted the performance of natural language processing using deep learning. An attention mechanism can select the information to be used, such as by conducting a dictionary lookup; this information is then used, for example, to select the next utterance word in a sentence. In neuroscience, the basis of the function of sequentially selecting words is considered to be the cortico-basal ganglia-thalamocortical loop. Here, we first show that the attention mechanism used in deep learning corresponds to the mechanism in which the cerebral basal ganglia suppress thalamic relay cells in the brain. Next, we demonstrate that, in neuroscience, the output of the basal ganglia is associated with the action output in the actor of reinforcement learning. Based on these, we show that the aforementioned loop can be generalized as reinforcement learning that controls the transmission of the prediction signal so as to maximize the prediction reward. We call this attentional reinforcement learning (ARL). In ARL, the actor selects the information transmission route according to the attention, and the prediction signal changes according to the context detected by the information source of the route. Hence, ARL enables flexible action selection that depends on the situation, unlike traditional reinforcement learning, wherein the actor must directly select an action.



2020 ◽  
Vol 34 (04) ◽  
pp. 5883-5891
Author(s):  
Jianwen Sun ◽  
Tianwei Zhang ◽  
Xiaofei Xie ◽  
Lei Ma ◽  
Yan Zheng ◽  
...  

Adversarial attacks against conventional Deep Learning (DL) systems and algorithms have been widely studied, and various defenses were proposed. However, the possibility and feasibility of such attacks against Deep Reinforcement Learning (DRL) are less explored. As DRL has achieved great success in various complex tasks, designing effective adversarial attacks is an indispensable prerequisite towards building robust DRL algorithms. In this paper, we introduce two novel adversarial attack techniques to stealthily and efficiently attack the DRL agents. These two techniques enable an adversary to inject adversarial samples in a minimal set of critical moments while causing the most severe damage to the agent. The first technique is the critical point attack: the adversary builds a model to predict the future environmental states and agent's actions, assesses the damage of each possible attack strategy, and selects the optimal one. The second technique is the antagonist attack: the adversary automatically learns a domain-agnostic model to discover the critical moments of attacking the agent in an episode. Experimental results demonstrate the effectiveness of our techniques. Specifically, to successfully attack the DRL agent, our critical point technique only requires 1 (TORCS) or 2 (Atari Pong and Breakout) steps, and the antagonist technique needs fewer than 5 steps (4 Mujoco tasks), which are significant improvements over state-of-the-art methods.



Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1433
Author(s):  
Kaifang Wan ◽  
Dingwei Wu ◽  
Yiwei Zhai ◽  
Bo Li ◽  
Xiaoguang Gao ◽  
...  

A pursuit–evasion game is a classical maneuver confrontation problem in the multi-agent systems (MASs) domain. An online decision technique based on deep reinforcement learning (DRL) was developed in this paper to address the problem of environment sensing and decision-making in pursuit–evasion games. A control-oriented framework developed from the DRL-based multi-agent deep deterministic policy gradient (MADDPG) algorithm was built to implement multi-agent cooperative decision-making to overcome the limitation of the tedious state variables required for the traditionally complicated modeling process. To address the effects of errors between a model and a real scenario, this paper introduces adversarial disturbances. It also proposes a novel adversarial attack trick and adversarial learning MADDPG (A2-MADDPG) algorithm. By introducing an adversarial attack trick for the agents themselves, uncertainties of the real world are modeled, thereby optimizing robust training. During the training process, adversarial learning was incorporated into our algorithm to preprocess the actions of multiple agents, which enabled them to properly respond to uncertain dynamic changes in MASs. Experimental results verified that the proposed approach provides superior performance and effectiveness for pursuers and evaders, and both can learn the corresponding confrontational strategy during training.



Author(s):  
Elaheh Barati ◽  
Xuewen Chen

In reinforcement learning algorithms, leveraging multiple views of the environment can improve the learning of complicated policies. In multi-view environments, due to the fact that the views may frequently suffer from partial observability, their level of importance are often different. In this paper, we propose a deep reinforcement learning method and an attention mechanism in a multi-view environment. Each view can provide various representative information about the environment. Through our attention mechanism, our method generates a single feature representation of environment given its multiple views. It learns a policy to dynamically attend to each view based on its importance in the decision-making process. Through experiments, we show that our method outperforms its state-of-the-art baselines on TORCS racing car simulator and three other complex 3D environments with obstacles. We also provide experimental results to evaluate the performance of our method on noisy conditions and partial observation settings.



2021 ◽  
Author(s):  
Zhiqiang Wan ◽  
Hepeng Li ◽  
Hang Shuai ◽  
Yan Lindsay Sun ◽  
Haibo He


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1061
Author(s):  
Yanliang Jin ◽  
Qianhong Liu ◽  
Liquan Shen ◽  
Leiji Zhu

The research on autonomous driving based on deep reinforcement learning algorithms is a research hotspot. Traditional autonomous driving requires human involvement, and the autonomous driving algorithms based on supervised learning must be trained in advance using human experience. To deal with autonomous driving problems, this paper proposes an improved end-to-end deep deterministic policy gradient (DDPG) algorithm based on the convolutional block attention mechanism, and it is called multi-input attention prioritized deep deterministic policy gradient algorithm (MAPDDPG). Both the actor network and the critic network of the model have the same structure with symmetry. Meanwhile, the attention mechanism is introduced to help the vehicles focus on useful environmental information. The experiments are conducted in the open racing car simulator (TORCS)and the results of five experiment runs on the test tracks are averaged to obtain the final result. Compared with the state-of-the-art algorithm, the maximum reward increases from 62,207 to 116,347, and the average speed increases from 135 km/h to 193 km/h, while the number of success episodes to complete a circle increases from 96 to 147. Also, the variance of the distance from the vehicle to the center of the road is compared, and the result indicates that the variance of the DDPG is 0.6 m while that of the MAPDDPG is only 0.2 m. The above results indicate that the proposed MAPDDPG achieves excellent performance.



2021 ◽  
Author(s):  
Chiagoziem C. Ukwuoma ◽  
Md Belal Bin Heyat ◽  
Mahmoud Masadeh ◽  
Faijan Akhtar ◽  
Qin Zhiguang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document