Design of Information Detection and Integration of Electronic Fabric System Based on Complex Engineering Problems

Author(s):  
Cuijuan Guo ◽  
Jinhai Wang ◽  
Xiuyan Li ◽  
Jinghong Miao
2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Naomi C. Chesler ◽  
A. R. Ruis ◽  
Wesley Collier ◽  
Zachari Swiecki ◽  
Golnaz Arastoopour ◽  
...  

Engineering virtual internships are a novel paradigm for providing authentic engineering experiences in the first-year curriculum. They are both individualized and accommodate large numbers of students. As we describe in this report, this approach can (a) enable students to solve complex engineering problems in a mentored, collaborative environment; (b) allow educators to assess engineering thinking; and (c) provide an introductory experience that students enjoy and find valuable. Furthermore, engineering virtual internships have been shown to increase students'—and especially women's—interest in and motivation to pursue engineering degrees. When implemented in first-year engineering curricula more broadly, the potential impact of engineering virtual internships on the size and diversity of the engineering workforce could be dramatic.


2020 ◽  
Author(s):  
Sirimuvva Tadepalli ◽  
Sisi Cao ◽  
Debajit Saha ◽  
Keng-Ku Liu ◽  
Alex Chen ◽  
...  

Developing insect cyborgs by integrating external components (optical, electrical or mechanical) with biological counterparts has a potential to offer elegant solutions for complex engineering problems.1 A key limiting step in the development of such biorobots arises at the nano-bio interface, i.e. between the organism and the nano implant that offers remote controllability.1,2 Often, invasive procedures are necessary that tend to severely compromise the navigation capabilities as well as the longevity of such biorobots. Therefore, we sought to develop a non-invasive solution using plasmonic nanostructures that can be photoexcited to generate heat with spatial and temporal control. We designed a ‘nanotattoo’ using silk that can interface the plasmonic nanostructures with a biological tissue. Our results reveal that both structural and functional integrity of the biological tissues such as insect antenna, compound eyes and wings were preserved after the attachment of the nanotattoo. Finally, we demonstrate that insects with the plasmonic nanotattoos can be remote controlled using light and integrated with functional recognition elements to detect the chemical environment in the region of interest. In sum, we believe that the proposed technology will play a crucial role in the emerging fields of biorobotics and other nano-bio applications.


2021 ◽  
Author(s):  
Rafael de Paula Garcia ◽  
Beatriz Souza Leite Pires de Lima ◽  
Afonso Celso de Castro Lemonge ◽  
Breno Pinheiro Jacob

Abstract The application of Evolutionary Algorithms (EAs) to complex engineering optimization problems may present difficulties as they require many evaluations of the objective functions by computationally expensive simulation procedures. To deal with this issue, surrogate models have been employed to replace those expensive simulations. In this work, a surrogate-assisted evolutionary optimization procedure is proposed. The procedure combines the Differential Evolution method with a Anchor -nearest neighbors ( –NN) similarity-based surrogate model. In this approach, the database that stores the solutions evaluated by the exact model, which are used to approximate new solutions, is managed according to a merit scheme. Constraints are handled by a rank-based technique that builds multiple separate queues based on the values of the objective function and the violation of each constraint. Also, to avoid premature convergence of the method, a strategy that triggers a random reinitialization of the population is considered. The performance of the proposed method is assessed by numerical experiments using 24 constrained benchmark functions and 5 mechanical engineering problems. The results show that the method achieves optimal solutions with a remarkably reduction in the number of function evaluations compared to the literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-1
Author(s):  
Ricardo Soto ◽  
Eduardo Rodriguez-Tello ◽  
Eric Monfroy

Author(s):  
Khosrow Zarrabi ◽  
Jad Jelwan ◽  
Tahir Mahmood

The integrity and life assessment of welded joints operating at high temperatures and subjected to non-linear damage mechanisms such as plasticity and creep are complex engineering problems and currently the subject of intensive research activities. This paper gauges the accuracy of a model that takes into account creep and plasticity deformation proposed by Zarrabi et al. to a butt welded thick tube. It is shown that the proposed model can predict the life of this welded joint with an error of 1%. Currently the model is being extended to include fatigue deformation.


Sign in / Sign up

Export Citation Format

Share Document