Volume 9: Mechanics of Solids, Structures and Fluids
Latest Publications


TOTAL DOCUMENTS

93
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By ASMEDC

9780791844465

Author(s):  
Ryuichi Iwata ◽  
Takeo Kajishima ◽  
Shintaro Takeuchi

In the present study, bubble-particle interactions in suspensions are investigated by a coupled immersed-boundary and volume-of-fluid method (IB-VOF method), which is proposed by the present authors. The validity of the numerical method is examined through simulations of a rising bubble in a liquid and a falling particle in a liquid. Dilute particle-laden flows and a gas-liquid-solid flow involving solid particles and bubbles of comparable sizes to one another (Db/Dp = 1) are simulated. Drag coefficients of particles in particle-laden flows are estimated and flow fields involving multiple particles and a bubble are demonstrated.


Author(s):  
Stephanie Follett ◽  
Amer Hameed ◽  
S. Darina ◽  
John G. Hetherington

In order to validate the numerical procedure, the explosion of a mine was recreated within the non-linear dynamics software, AUTODYN. Two models were created and analysed for the purposes of this study — buried and flush HE charge in sand. The explosion parameters — time of arrival, maximum overpressure and specific impulse were recorded at two stand-off distances above the ground surface. These parameters are then compared with LS-DYNA models and published experimental data. The results, presented in table format, are in reasonable agreement.


Author(s):  
Masaaki Tamagawa

Recently artificial organs, especially rotary blood pumps, have been developed in the worldwide, but in this development, thrombus occurs in the pumps. In general, the main physical factors of thrombus formation are considered to be shear rate, wall properties for blood’s adhesion. But, there are no proper CFD codes for predicting thrombus formations using physical parameters in shear flows. In this paper, new model for predicting thrombus formation by considering aggregation and adhesion force to the wall by lattice Boltzmann method is proposed, and the trend of thrombus’s adhesion to the wall can be simulated more adequately than that of previous one.


Author(s):  
Iva´n C. Ca´bulo-Pe´rez ◽  
Juan P. Casas-Rodri´guez

The objective of this research is to study the damage behavior of bulk adhesive and single lap joint (SLJ) specimens during low cycle fatigue (LCF). Fatigue tests under constant stress amplitude were done and strain response was measured through cycles to failure using the bulk adhesive and SLJ data. A non linear damage model was used to fit experimental results. Identification of the damage parameters for bulk adhesive was obtained from the damage against accumulated plastic strain plot. It is shown that the plastic strain can be obtained from the constant stress test if the instantaneous elastic modulus, i.e. modulus affected by damage, is evaluated for each cycle. On the other hand, damage in SLJ was seen mainly in the adhesive for itself — no substrate failure — this fact is used to propose that fatigue response in the joint is due to continuum damage accumulation in the adhesive as the number of cycles increases. Damage behavior under compressive loads was not taken into account but good correlation of numerical and experimental data was obtained. It was found that damage evolution behaves in a non linear manner as the plastic deformation grows for each cycle: on fatigue onset an accelerated damage grow is observed, then a proportional evolution, and finally a rapid failure occurs; this characteristics were seen in both the SLJ and bulk adhesive specimen. So far, this research takes the damage model found in a standard adhesive specimen and assumes it is accurate enough to represent the damage behavior of the SLJ configuration.


Author(s):  
Shawn A. Chester ◽  
Vikas Srivastava ◽  
Claudio V. Di Leo ◽  
Lallit Anand

The most common shape-memory polymers are those in which the shape-recovery is thermally-induced. A body made from such a material may be subjected to large deformations at an elevated temperature above its glass transition temperature &Vthgr;g. Cooling the deformed body to a temperature below &Vthgr;g under active kinematical constraints fixes the deformed shape of the body. The original shape of the body may be recovered if the material is heated back to a temperature above &Vthgr;g without the kinematical constraints. This phenomenon is known as the shape-memory effect. If the shape recovery is partially constrained, the material exerts a recovery force and the phenomenon is known as constrained-recovery.


Author(s):  
Sachin S. Gautam ◽  
Ravindra K. Saxena ◽  
P. M. Dixit

High velocity contact-impact problems are of great interest in industries related to aerospace, mechanical and civil engineering. Ductile fracture often occurs in such applications. Taylor rod impact tests are used as experimental and numerical tests for determining the mechanical behaviour of materials subjected to high strain rates. At sufficiently high velocities, a significant plastic deformation leading to fracture is observed. In this paper, ductile fracture in Taylor rod made of AISI1045 steel is simulated using a continuum damage mechanics model. Simulations are performed for the velocity of 250 and 300 m/s. It is observed that, at lower velocities, tensile cracks are observed at the outer edge of the impact surface. On the other hand, at higher velocities, the fracture is observed at the central axis (confined fracture) as well as at the outer edge leading to fragmentation. Both the results are consistent with the experimental results available in the literature.


Author(s):  
K. Yazdchi ◽  
S. Srivastava ◽  
S. Luding

Many important natural processes involving flow through porous media are characterized by large filtration velocity. Therefore, it is important to know when the transition from viscous to the inertial flow regime actually occurs in order to obtain accurate models for these processes. In this paper, a detailed computational study of laminar and inertial, incompressible, Newtonian fluid flow across an array of cylinders is presented. Due to the non-linear contribution of inertia to the transport of momentum at the pore scale, we observe a typical departure from Darcy’s law at sufficiently high Reynolds number (Re). Our numerical results show that the weak inertia correction to Darcy’s law is not a square or a cubic term in velocity, as it is in the Forchheimer equation. Best fitted functions for the macroscopic properties of porous media in terms of microstructure and porosity are derived and comparisons are made to the Ergun and Forchheimer relations to examine their relevance in the given porosity and Re range. The results from this study can be used for verification and validation of more advanced models for particle fluid interaction and for the coupling of the discrete element method (DEM) with finite element method (FEM).


Author(s):  
Ritwik Raj ◽  
Prashant K. Purohit

We present applications of a model developed to describe unfolding in macromolecules under an axial force. We show how different experimentally observed force-extension behaviors can be reproduced within a common theoretical framework. We propose that the unfolding occurs via the motion of a folded/unfolded interface along the length of the molecule. The molecules are modeled as one-dimensional continua capable of existing in two metastable states under an applied tension. The interface separates these two metastable states and represents a jump in stretch, which is related to applied force by the worm-like-chain relation. The mechanics of the interface are governed by the Abeyaratne-Knowles theory of phase transitions. The thermodynamic driving force controls the motion of the interface via an equation called the kinetic relation. By choosing an appropriate kinetic relation for the unfolding conditions and the macro-molecule under consideration, we have been able to generate a variety of unfolding processes in macromolecules.


Author(s):  
Yoshitaro Sakata ◽  
Souichi Saeki ◽  
Takashi Saito ◽  
Junji Ohgi

Authors proposed Optical Coherence Straingraphy (OCS), which could visualize micromechanical information, e.g. strain, tomographically and non-destructively. This method can execute the speckle deformation analysis based on cross-correlation technique of synthetic images obtained before and after loading by Optical Coherence Tomography. In this study, applying OCS to composite materials, e.g. plain-woven fiber-reinforced rubber, the experimental feasibility study was carried out, compared with numerical simulated results by image-based FEM. Consequently, OCS could discover the strain concentration in the vicinity of the intersection of orthogonally oriented fiber bundles. It was confirmed that tomographic strain distribution had qualitative agreement with the simulated one. Therefore, OCS was verified to provide mechanical properties non-destructively as internal strain distribution at the micro scale resolution.


Author(s):  
C. Flynn ◽  
M. B. Rubin ◽  
P. M. F. Nielsen

Physically-based fibrous soft tissue models often consider the tissue to be a collection of fibers with a continuous distribution function to represent their orientations. This study proposes a simple model for the response of fibrous connective tissues in terms of a discrete number of fiber bundles. The proposed model consists of six weighted fiber bundles orientated such that they pass through opposing vertices of an icosahedron. A novel aspect of the proposed model is the use of a simple analytical function to represent the undulation distribution of the collagen fibers. The mechanical response of the elastin fiber is represented by a neo-Hookean hyperelastic equation. A parameter study was performed to analyze the effect of each parameter on the overall response of the model. The proposed model accurately simulated the uniaxial stretching of pig skin with an 8% error-of-fit for stretch ratios up to 1.8. The model also accurately simulated the biaxial stretching of rabbit skin with a 10% error-of-fit for stretch ratios up to 1.9. The stiffness of the collagen fibers determined by the model was about 100 MPa for the rabbit skin and 900 MPa for the pig skin, which are comparable with values reported in the literature. The stiffness of the elastin fibers in the model was about 2 kPa.


Sign in / Sign up

Export Citation Format

Share Document