Investigation of Flow Structures Around Cylinders with High Reynolds Number by Liutex Vortex Identification Methods

Author(s):  
Jiawei He ◽  
Songtao Chen ◽  
Weiwen Zhao ◽  
Decheng Wan
Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 28
Author(s):  
John Hart ◽  
Jonathan Potts

This paper presents the first scale resolving computational fluid dynamic (CFD) investigation of a geometrically realistic feather shuttlecock with rotation at a high Reynolds number. Rotation was found to reduce the drag coefficient of the shuttlecock. However, the drag coefficient is shown to be independent of the Reynolds number for both rotating and statically fixed shuttlecocks. Particular attention is given to the influence of rotation on the development of flow structures. Rotation is shown to have a clear influence on the formation of flow structures particularly from the feather vanes, and aft of the shuttlecock base. This further raises concerns regarding wind tunnel studies that use traditional experimental sting mounts; typically inserted into this aft region, they have potential to compromise both flow structure and resultant drag forces. As CFD does not necessitate use of a sting with proper application, it has great potential for a detailed study and analysis of shuttlecocks.


2020 ◽  
Vol 204 ◽  
pp. 107274 ◽  
Author(s):  
Philippe Mercier ◽  
Maria Ikhennicheu ◽  
Sylvain Guillou ◽  
Grégory Germain ◽  
Emmanuel Poizot ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 390
Author(s):  
Hiroaki Kusuno ◽  
Toshiyuki Sanada

In the motion of two spherical bubbles rising side by side, the bubbles are known to attract each other at a high Reynolds number (Re = ρUd/μ). Furthermore, spherical bubbles kiss and bounce under certain conditions; however, deformable bubbles repel each other without kissing. This paper experimentally and numerically presents the flow structures and shape of the nonkissing repulsion of deformable bubbles. For the experimental analysis, we organized bubble behaviors by Galilei number (Ga = ρg1/2d3/2/μ) and Bond number (Bo = ρgd2/σ). The bubbles repelled each other without kissing near the unstable critical curve of a single bubble. The curvature inside the gap, which is similar to the shape of a zigzag behavior bubble, was large. For the numerical analysis, the velocity of the equatorial plane inside the gap was larger due to the potential interaction, although the velocity behind was the opposite due to the strengthened vorticity generated at the surface. Furthermore, the double-threaded wake emerged behind the interacting bubbles, and it showed that the rotation direction was repulsion regardless of whether the bubbles attracted or repelled each other. The streamline behind the bubbles in the 2D plane was from the outside to the inside.


1994 ◽  
Vol 9 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Rahima K. Mohammed ◽  
Tim A. Osswald ◽  
Timothy J. Spiegelhoff ◽  
Esther M. Sun

Sign in / Sign up

Export Citation Format

Share Document