Numerical study on flow structures of high Reynolds number submerged jet in an axis-symmetric cavity

Author(s):  
Y.C. Wang ◽  
S.L. Cao ◽  
C.C. Gao ◽  
L. Tan
Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 28
Author(s):  
John Hart ◽  
Jonathan Potts

This paper presents the first scale resolving computational fluid dynamic (CFD) investigation of a geometrically realistic feather shuttlecock with rotation at a high Reynolds number. Rotation was found to reduce the drag coefficient of the shuttlecock. However, the drag coefficient is shown to be independent of the Reynolds number for both rotating and statically fixed shuttlecocks. Particular attention is given to the influence of rotation on the development of flow structures. Rotation is shown to have a clear influence on the formation of flow structures particularly from the feather vanes, and aft of the shuttlecock base. This further raises concerns regarding wind tunnel studies that use traditional experimental sting mounts; typically inserted into this aft region, they have potential to compromise both flow structure and resultant drag forces. As CFD does not necessitate use of a sting with proper application, it has great potential for a detailed study and analysis of shuttlecocks.


2017 ◽  
Vol 824 ◽  
pp. 1-4 ◽  
Author(s):  
Steven A. Balbus

Rotating flow in which the angular velocity decreases outward while the angular momentum increases is known as ‘quasi-Keplerian’. Despite the general tendency of shear flow to break down into turbulence, this type of flow seems to maintain stability at very large Reynolds number, even when nonlinearly perturbed, a behaviour that strongly influences our understanding of astrophysical accretion discs. Investigating these flows in the laboratory is difficult because secondary Ekman flows, caused by the retaining Couette cylinders, can become turbulent on their own. A recent high Reynolds number numerical study by Lopez & Avila (J. Fluid Mech., vol. 817, 2017, pp. 21–34) reconciles apparently discrepant laboratory experiments by confirming that this secondary flow recedes toward the axial boundaries of the container as the Reynolds number is increased, a result that enhances our understanding of nonlinear quasi-Keplerian flow stability.


Sign in / Sign up

Export Citation Format

Share Document