Running Time Analysis of Broadcast Consensus Protocols
AbstractBroadcast consensus protocols (BCPs) are a model of computation, in which anonymous, identical, finite-state agents compute by sending/receiving global broadcasts. BCPs are known to compute all number predicates in $$\mathsf {NL}=\mathsf {NSPACE}(\log n)$$ NL = NSPACE ( log n ) where n is the number of agents. They can be considered an extension of the well-established model of population protocols. This paper investigates execution time characteristics of BCPs. We show that every predicate computable by population protocols is computable by a BCP with expected $$\mathcal {O}(n \log n)$$ O ( n log n ) interactions, which is asymptotically optimal. We further show that every log-space, randomized Turing machine can be simulated by a BCP with $$\mathcal {O}(n \log n \cdot T)$$ O ( n log n · T ) interactions in expectation, where T is the expected runtime of the Turing machine. This allows us to characterise polynomial-time BCPs as computing exactly the number predicates in $$\mathsf {ZPL}$$ ZPL , i.e. predicates decidable by log-space, randomised Turing machine with zero-error in expected polynomial time where the input is encoded as unary.