Turbulent Internal Flows

Author(s):  
V. Babu
Keyword(s):  
1997 ◽  
Author(s):  
Lisle H. Russell ◽  
Philip M. Bushong ◽  
Robert E. Richardson

1950 ◽  
Vol 1 (4) ◽  
pp. 305-318
Author(s):  
G. N. Ward

SummaryThe approximate supersonic flow past a slender ducted body of revolution having an annular intake is determined by using the Heaviside operational calculus applied to the linearised equation for the velocity potential. It is assumed that the external and internal flows are independent. The pressures on the body are integrated to find the drag, lift and moment coefficients of the external forces. The lift and moment coefficients have the same values as for a slender body of revolution without an intake, but the formula for the drag has extra terms given in equations (32) and (56). Under extra assumptions, the lift force due to the internal pressures is estimated. The results are applicable to propulsive ducts working under the specified condition of no “ spill-over “ at the intake.


1995 ◽  
Vol 48 (4) ◽  
pp. 189-212 ◽  
Author(s):  
G. J. Brereton ◽  
R. R. Mankbadi

Turbulent flow which undergoes organized temporal unsteadiness is a subject of great importance to unsteady aerodynamic and thermodynamic devices. Of the many classes of unsteady flows, those bounded by rigid smooth walls are particularly amenable to fundamental studies of unsteady turbulence and its modeling. These flows are presently being given increased attention as interest grows in the prospect of predicting non-equilibrium turbulence and because of their relevance to turbulence–acoustics interactions, in addition to their importance as unsteady flows in their own right. It is therefore timely to present a review of recent advances in this area, with particular emphasis placed on physical understanding of the turbulent processes in these flows and the development of turbulence models to predict them. A number of earlier reviews have been published on unsteady turbulent flows, which have tended to focus on specific aspects of certain flows. This review is intended to draw together, from the diverse literature on the subject, information on fundamental aspects of these flows which are relevant to improved understanding and development of predictive models. Of particular relevance are issues of instability and transition to turbulence in reciprocating flows, the robustness of coherent structures in wall-bounded flows to forced perturbations (in contrast to the relative ease of manipulation in free shear flows), unsteady scalar transport, improved measurement technology, recent contributions to target data for model testing and the quasi-steady and non-steady rapid distortion approaches to turbulence modeling in these flows. The present article aims to summarize recent contributions to this research area, with a view to consolidating comprehension of the well-known basics of these flows, and drawing attention to critical gaps in information which restrict our understanding of unsteady turbulent flows.


2009 ◽  
Vol 57 (660) ◽  
pp. 9-17 ◽  
Author(s):  
Eijiro KITAMURA ◽  
Sadatake TOMIOKA ◽  
Noboru SAKURANAKA ◽  
Syuichi WATANABE ◽  
Goro MASUYA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document