Interior-Exterior Ambiances: Environmental Transitions in the Recollection of an Urban Stroll

Author(s):  
Claude M. H. Demers ◽  
André Potvin
Author(s):  
Masimalai Palaniyandi

Historical records evidenced of urban landscape changes, and environmental transitions brought by the improper growths and urban development’s of the urbanisation and industrialization in the developing countries, especially in India, significantly chaotic urban sprawl and industrial growths, and the development of its allied activities for the recent decades, invites new, emerging, re-emerging, and triggers the tropical infectious diseases including vector borne diseases (VBD) as well non-communicable diseases. Urban sprawl has a multiplier effect of growth of unplanned a crowded housing, and industrialization has an impact on the urban landscape with commercial and market development, and roads over large expanses of urban land while little concern for appropriate urban planning. The union government of India is launching to promote 100 mega smart city projects / metropolitan / urban agglomeration across the nation for betterment of the standard of living infrastructure facilities by 2030. The large scale urban landscape architectural changes, land use / land cover changes, environmental transitions, and micro climatic changes in the heart of the urban landscape, and its fringe areas on the consequence of built-up structures, construction of roads transport networks, drainages, commercial buildings, human dwellings, educational buildings, legal and medical health services, income tax professionals, small scale to large scale industries, etc., The census of India, reports highlighted that people mass movements / migration from rural to the urban, and small towns to mega cities are notably accelerating trends for the recent decades mainly for the purposes of occupation, education, trade and commerce, and professional services, generally reasons for male migration, and marriage is the absolute reason for female adults migration. The spatial and temporal aspects of malaria and dengue has been declining trends in rural settings, however, it has been accelerating trends in the urban settings due to the urban buoyant migrants. Urbanization and industrialization effect on urban landscape environment leads to breakdown of sanitations, water-borne diseases associated with inadequate  and unsafe drinking water supply, tendency to use metal, plastic, and mud pots water storage containers, discarded domestic waste misshapen to vector breeding habitats containers, urban heat island, garbage waste disposal, liquid waste from dwellings, and industries, air pollution (dust, pollen and spores suspended as particles, Sulphur Dioxide-SO2, nitrogen oxides-NO, Carbonate-CO3, depletion of Oxygen O2, Ozone-O3, Methane  Gas- CH₄, Lead- Pb,  Mercury- Hg etc.,), exonerated by the industries and urban transport emissions, modern transport / shipping goods and services, and collectively hazard to human health through erratic infectious diseases and vector borne diseases immediately.


2021 ◽  
Author(s):  
◽  
Ursula Alyson Cochran

<p>New Zealand is situated on the boundary between the Pacific and Australian tectonic plates. The Wellington region lies near the southern end of the Hikurangi subduction zone and within a zone of major, active strike-slip faults. Wellington's paleoseismic and historic records indicate that large surface rupture earthquakes have occurred on these faults in the past. Development of a complete record of past large earthquakes is a high priority for the region because of the risk posed by occurrence of large earthquakes in the future. The existing paleoseismic record has been derived predominantly from studies of fault trench stratigraphy, raised beach ridges and offset river terraces. The sedimentary record of lakes and coastal waterbodies is a source of information that has not been used specifically for paleoseismic purposes in the region. Therefore investigation of Wellington's sedimentary record is used in this thesis to make a contribution to the paleoseismic record. Holocene sedimentary sequences are studied from three small, low elevation, coastal waterbodies: Taupo Swamp, Okupe Lagoon and Lake Kohangapiripiri. Sequences of between 200 and 650 cm depth were collected using a hand-operated coring device. Sedimentology and diatom microfossil content were analysed and interpreted to enable reconstruction of paleoenvironment at each site. Radiocarbon dating was used to provide chronologies for the sequences that are aged between 5000 and 7500 calibrated years before present (cal. years BP). Diatom analysis is the main tool used to reconstruct paleoenvironment and detect evidence for occurrence of past large earthquakes. To aid reconstruction of sedimentary sequences used in this project, as well as coastal sequences in New Zealand in general, a coastal diatom calibration set was constructed using 50 sites around New Zealand. Modern diatom distribution and abundance, and associated environmental variables are analysed using ordination and weighted averaging techniques. Detrended correspondence analysis arranges species according to salinity preferences and divides sites clearly into waterbody types along a coastal gradient. This analysis enables reconstruction of waterbody type from fossil samples by passive placement onto ordination diagrams. Weighted averaging regression of calibration set samples results in a high correlation (r2jack=0.84) between observed and diatom inferred salinity, and enables salinity preferences and tolerances to be derived for 100 species. This confirms for the first time that species' preferences derived in the Northern Hemisphere are generally applicable to diatoms living in the coastal zone of New Zealand. Weighted averaging calibration and the modern analogue technique are used to generate quantitative estimates of paleosalinity for fossil samples. Paleoenvironmental reconstructions of Taupo Swamp, Okupe Lagoon and Lake Kohangapiripiri indicate that each waterbody has been isolated from the sea during the late Holocene. Isolation has been achieved through interplay of sediment accumulation causing growth of barrier beaches, and coseismic uplift. Ten distinct transitions between different paleoenvironments are recognised from the three sequences. These transitions involve changes in relative sea level or water table level often in association with catchment disturbance or marine influx events. All transitions occur suddenly and are laterally extensive and synchronous within each waterbody. Quantitative estimates of paleosalinity and waterbody type are used to differentiate between large and small magnitude changes in paleoenvironment. Five transitions involve large amounts of paleoenvironmental change and provide evidence for earthquakes occurring at approximately 5200, approximately 3200, and approximately 2300 cal. years BP. Five other transitions are consistent with the effects of large earthquakes occurring at approximately 6800, 2200, approximately 1000, approximately 500 cal. years BP and 1855 AD but do not provide independent evidence of the events. Environmental transitions at Lake Kohangapiripiri clarify the timing of rupture of the Wairarapa Fault by bracketing incompatible age estimates derived from two different sites on the fault. The oldest environmental transitions recognised at Taupo Swamp and Okupe Lagoon both occur at approximately 3200 cal. years BP indicating that western Wellington was uplifted at this time. Environmental transitions are recorded at all three study sites at approximately 2300 cal. years BP indicating that the entire western and central Wellington region experienced coseismic uplift at this time. Because of the distance between sites this apparent synchroneity implies that several faults in the region ruptured at a similar time. Investigation of sedimentary sequences contributes to the existing paleoseismic record by providing additional estimates of timing for past large earthquakes, enabling estimation of the areal extent of the effects of past earthquakes, and by highlighting periods of fault rupture activity in the late Holocene.</p>


Author(s):  
Gordon McGranahan ◽  
Jacob Songsore ◽  
Marianne Kjellén

Author(s):  
Mike Rowson

There have been huge improvements in women’s and children's health over the past five decades, resulting from rising living standards, increased health expenditures, and donor investments. However, large inequalities remain and, driven by epidemiological, economic, political, and environmental transitions, new challenges have emerged. Global health and women’s and children’s health specifically have been evolving to recognise the broader determinants of health, and away from more targeted interventions. The vision of Universal Health Coverage and the Sustainable Development Goals are the broader visions put forward by the international community. But there remain questions about whether they will achieve the cross-sectoral action required to improve women’s and children's health still further.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Antoine Bagnaro ◽  
Federico Baltar ◽  
Gretchen Brownstein ◽  
William G. Lee ◽  
Sergio E. Morales ◽  
...  

Abstract Background One of the central objectives of microbial ecology is to study the distribution of microbial communities and their association with their environments. Biogeographical studies have partitioned the oceans into provinces and regions, but the identification of their boundaries remains challenging, hindering our ability to study transition zones (i.e. ecotones) and microbial ecosystem heterogeneity. Fuzzy clustering is a promising method to do so, as it creates overlapping sets of clusters. The outputs of these analyses thus appear both structured (into clusters) and gradual (due to the overlaps), which aligns with the inherent continuity of the pelagic environment, and solves the issue of defining ecosystem boundaries. Results We show the suitability of applying fuzzy clustering to address the patchiness of microbial ecosystems, integrating environmental (Sea Surface Temperature, Salinity) and bacterioplankton data (Operational Taxonomic Units (OTUs) based on 16S rRNA gene) collected during six cruises over 1.5 years from the subtropical frontal zone off New Zealand. The technique was able to precisely identify ecological heterogeneity, distinguishing both the patches and the transitions between them. In particular we show that the subtropical front is a distinct, albeit transient, microbial ecosystem. Each water mass harboured a specific microbial community, and the characteristics of their ecotones matched the characteristics of the environmental transitions, highlighting that environmental mixing lead to community mixing. Further explorations into the OTU community compositions revealed that, although only a small proportion of the OTUs explained community variance, their associations with given water mass were consistent through time. Conclusion We demonstrate recurrent associations between microbial communities and dynamic oceanic features. Fuzzy clusters can be applied to any ecosystem (terrestrial, human, marine, etc) to solve uncertainties regarding the position of microbial ecological boundaries and to refine the relation between the distribution of microorganisms and their environment.


Sign in / Sign up

Export Citation Format

Share Document