Remarks on the Limit-Circle Classification of Conformable Fractional Sturm-Liouville Operators

Author(s):  
Bilender P. Allahverdiev ◽  
Hüseyin Tuna ◽  
Yüksel Yalçinkaya
Author(s):  
David Race

SynopsisIn this paper, the formally J-symmetric Sturm-Liouville operator with complex-valued coefficients is considered and a generalisation of the Weyl limit-point, limit-circle dichotomy is sought by means of m (λ )-functions. These functions are then used to give an explicit description of all the associated J-selfadjoint operators with separated boundary conditions in the limit-circle case. A formulation of the eigenvalues of these operators, and a characterisation of which extensions are non-well-posed, are also found. Finally, the limit-point case is studied, mainly by means of an example.


2016 ◽  
Vol 66 (4) ◽  
Author(s):  
Bilender P. Allahverdiev

AbstractIn this study we construct a space of boundary values of the minimal symmetric discrete Sturm-Liouville (or second-order difference) operators with defect index (1, 1) (in limit-circle case at ±∞ and limit-point case at ∓∞), acting in the Hilbert space


2016 ◽  
Vol 53 (4) ◽  
pp. 512-524
Author(s):  
Hüseyin Tuna ◽  
Aytekin Eryilmaz

In this paper, we study dissipative q-Sturm—Liouville operators in Weyl’s limit circle case. We describe all maximal dissipative, maximal accretive, self adjoint extensions of q-Sturm—Liouville operators. Using Livšic’s theorems, we prove a theorem on completeness of the system of eigenvectors and associated vectors of the dissipative q-Sturm—Liouville operators.


Author(s):  
F. V. Atkinson ◽  
C. T. Fulton

SynopsisAsymptotic formulae for the positive eigenvalues of a limit-circle eigenvalue problem for –y” + qy = λy on the finite interval (0, b] are obtained for potentials q which are limit circle and non-oscillatory at x = 0, under the assumption xq(x)∈L1(0,6). Potentials of the form q(x) = C/xk, 0<fc<2, are included. In the case where k = 1, an independent check based on the limit-circle theory of Fulton and an asymptotic expansion of the confluent hypergeometric function, M(a, b; z), verifies the main result.


Sign in / Sign up

Export Citation Format

Share Document