In Search of the First-Order Part of Ramsey’s Theorem for Pairs

Author(s):  
Leszek Aleksander Kołodziejczyk ◽  
Keita Yokoyama
2001 ◽  
Vol 66 (2) ◽  
pp. 873-880 ◽  
Author(s):  
Tamara J. Hummel ◽  
Carl G. Jockusch

AbstractIt is shown that for each computably enumerable set of n-element subsets of ω there is an infinite set A ⊆ ω such that either all n-element subsets of A are in or no n-element subsets of A are in . An analogous result is obtained with the requirement that A be replaced by the requirement that the jump of A be computable from 0(n). These results are best possible in various senses.


2021 ◽  
pp. 103028
Author(s):  
Marta Fiori-Carones ◽  
Leszek Aleksander Kołodziejczyk ◽  
Katarzyna W. Kowalik

2007 ◽  
Vol 72 (1) ◽  
pp. 171-206 ◽  
Author(s):  
Denis R. Hirschfeldt ◽  
Richard A. Shore

AbstractWe investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is wellknown that Ramsey's Theorem for pairs () splits into a stable version () and a cohesive principle (COH). We show that the same is true of ADS and CAC, and that in their cases the stable versions are strictly weaker than the full ones (which is not known to be the case for and ). We also analyze the relationships between these principles and other systems and principles previously studied by reverse mathematics, such as WKL0, DNR, and BΣ2. We show, for instance, that WKL0 is incomparable with all of the systems we study. We also prove computability-theoretic and conservation results for them. Among these results are a strengthening of the fact, proved by Cholak, Jockusch, and Slaman, that COH is -conservative over the base system RCA0. We also prove that CAC does not imply DNR which, combined with a recent result of Hirschfeldt, Jockusch. Kjos-Hanssen, Lempp, and Slaman, shows that CAC does not imply (and so does not imply ). This answers a question of Cholak, Jockusch, and Slaman.Our proofs suggest that the essential distinction between ADS and CAC on the one hand and on the other is that the colorings needed for our analysis are in some way transitive. We formalize this intuition as the notions of transitive and semitransitive colorings and show that the existence of homogeneous sets for such colorings is equivalent to ADS and CAC, respectively. We finish with several open questions.


2012 ◽  
Vol 77 (4) ◽  
pp. 1272-1280 ◽  
Author(s):  
Stephen Flood

AbstractIn this paper, we propose a weak regularity principle which is similar to both weak König's lemma and Ramsey's theorem. We begin by studying the computational strength of this principle in the context of reverse mathematics. We then analyze different ways of generalizing this principle.


2009 ◽  
Vol 74 (2) ◽  
pp. 557-578 ◽  
Author(s):  
Damir D. Dzhafarov ◽  
Carl G. Jockusch

AbstractIt was shown by Cholak, Jockusch, and Slaman that every computable 2-coloring of pairs admits an infinite low2 homogeneous set H. We answer a question of the same authors by showing that H may be chosen to satisfy in addition C ≰rH, where C is a given noncomputable set. This is shown by analyzing a new and simplified proof of Seetapun's cone avoidance theorem for Ramsey's theorem. We then extend the result to show that every computable 2-coloring of pairs admits a pair of low2 infinite homogeneous sets whose degrees form a minimal pair.


2015 ◽  
Vol 3 (2) ◽  
pp. 46
Author(s):  
Nirbhay Kumar Sinha

<p>In this paper, we normalised the second-order part of the Hamiltonian of the problem. The problem is generalised in the sense that fewer massive primary is supposed to be an oblate spheroid. By photogravitational we mean that both primaries are radiating. With the help of Mathematica, H<sub>2</sub> is normalised to H<sub>2</sub> = a<sub>1</sub>b<sub>1</sub>w<sub>1</sub> + a<sub>2</sub>b<sub>2</sub>w<sub>2</sub>. The resulting motion is composed of elliptic motion with a short period (2p/w<sub>1</sub>), completed by an oscillation along the z-axis with a short period (2p/w<sub>2</sub>).</p>


Sign in / Sign up

Export Citation Format

Share Document