A Maple Toolchain for Rigid Body Dynamics of Serial, Hybrid and Parallel Robots

Author(s):  
Moritz Schappler ◽  
Tim-David Job ◽  
Tobias Ortmaier
2021 ◽  
Vol 104 (4) ◽  
pp. 003685042110630
Author(s):  
Jinlu Ni ◽  
Jiangping Mei ◽  
Weizhong Hu

Considering the real-time control of a high-speed parallel robot, a concise and precise dynamics model is essential for the design of the dynamics controller. However, the complete rigid-body dynamics model of parallel robots is too complex for online calculation. Therefore, a hierarchical approach for dynamics model simplification, which considers the kinematics performance, is proposed in this paper. Firstly, considering the motion smoothness of the end-effector, trajectory planning based on the workspace discretization is carried out. Then, the effects of the trajectory parameters and acceleration types on the trajectory planning are discussed. But for the fifth-order and seventh-order B-spline acceleration types, the trajectory will generate excessive deformation after trajectory planning. Therefore, a comprehensive index that considers both the motion smoothness and trajectory deformation is proposed. Finally, the dynamics model simplification method based on the combined mass distribution coefficients is studied. Results show that the hierarchical approach can guarantee both the excellent kinematics performance of the parallel robot and the accuracy of the simplified dynamics model under different trajectory parameters and acceleration types. Meanwhile, the method proposed in the paper can be applied to the design of the dynamics controller to enhance the robot's performance.


Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2015 ◽  
Vol 69 ◽  
pp. 40-44
Author(s):  
H.M. Yehia ◽  
E. Saleh ◽  
S.F. Megahid

2014 ◽  
Vol 10 (2) ◽  
pp. e1003456 ◽  
Author(s):  
Pascal Carrivain ◽  
Maria Barbi ◽  
Jean-Marc Victor

1986 ◽  
Vol 54 (7) ◽  
pp. 585-586
Author(s):  
Stephen F. Felszeghy

Author(s):  
Pål Johan From ◽  
Jan Tommy Gravdahl ◽  
Kristin Ytterstad Pettersen

Sign in / Sign up

Export Citation Format

Share Document